1 Vectors and Vector Analysis 2 Electrostatics

1 Vectors and Vector Analysis 2 Electrostatics

1 Vectors and Vector Analysis ² Scalar and Vector Products: ¡ ¢ a ¢ b = axbx + ayby + azbz ; a £ b = ay bz ¡ az by ; az bx ¡ axbz; axby ¡ aybx : a ¢ b is a scalar, a £ b is a pseudovector. ² Multiple Products: a ¢ (b £ c) = (a £ b) ¢ c ; a £ (b £ c) = b(a ¢ c) ¡ c(a ¢ b) : ² Scalar and vector operators: 2 2 2 ¡ @@@ ¢ @ @ @ r = ;; ; ¢ = r ¢ r = 2 +2 + 2 : @x @y @z @x @y @z ² Gradient, divergence, and curl of ¯elds: ¡ @f @f @f ¢ grad f(r) = rf(r) = ;; ; @x @y @z @ax @ay @az div a(r) = r ¢ a(r) = + + ; @x @y @z ¡ @az @ay @ax @az @ay @ax ¢ rot a(r) = r £ a(r) = ¡ ; ¡ ; ¡ : @y @z @z @x @x @y ² Second derivatives: ¡ ¢ rot grad f(r) = r £ rf(r) = o ; ¡ ¢ div rot a(r) = r ¢ r £ a(r) = 0 ; ¡ ¢ div grad f(r) = r ¢ rf(r) = ¢f(r) ; ¡ ¢ ¡ ¢ ¡ ¢ rot rot a(r) = r £ r £ a(r) = r r ¢ a(r) ¡ r £ r a(r) = grad div a(r) ¡ ¢a(r) : ² Integral theorems of Gauss and Stokes: If ­ is a ¯nite volume, and @­ its closed surface, I I ZZZ £ ¤ 3 b(r) ¢ da(r) = b(r) ¢ n^(r) da(r) = div b(r) d r : @­ @­ ­ If A is a ¯nite surface, and @A is its closed boundary, I ZZ £ ¤ b(r) ¢ dr = rot b(r) ¢ n^(r) da(r) : @A A 2 Electrostatics ² Elementary charge e and dielectric susceptibility ²0 : ¡19 e = 1:60217733 ¢ 10 As ; ¡12 As ²0 = 8:854187818 ¢ 10 : Vm 0 ² Coulomb's law (point particle, charge q, at position r ): 0 q r ¡ r E(r) = 0 3 : 4¼²0 jr ¡ r j 1 ² Coulomb's law (charge distribution ½(r)): ZZZ 0 0 1 ½(r )(r ¡ r ) 3 0 E(r) = 0 3 d r : 4¼²0 jr ¡ r j ² Coulomb's law in restricted geometries (surface charge density σ(r), line charge density ¸(r)): ZZ 0 0 Z 0 0 1 σ(r )(r ¡ r ) 0 1 ¸(r )(r ¡ r ) 0 E(r) = 0 3 da(r ) ; E(r) = 0 3 ds(r ) : 4¼²0 surface jr ¡ r j 4¼²0 line jr ¡ r j ² Electric flux Á­ through closed surface @­ of ¯nite volume ­: I I £ ¤ Á­(t) = E(r; t) ¢ da(r) = E(r; t) ¢ n^(r) da(r) : @­ @­ ² Gauss' law (integral and di®erential form): I ZZZ 1 3 Q(t) ½(r; t) Á­(t) = E(r; t) ¢ da(r) = ½(r; t)d r = ; div E(r; t) = : @­ ²0 ­ ²0 ²0 ² Electrostatic potential ©(r) (point particle, charge q, at position r0): q ©(r) = 0 : 4¼²0jr ¡ r j ² Electrostatic potential ©(r) (charge distribution ½(r)): ZZZ 0 1 ½(r ) 3 0 ©(r) = 0 d r : 4¼²0 jr ¡ r j ² Electrostatic potential in restricted geometries (surface charge density σ(r), line charge density ¸(r)): ZZ 0 Z 0 1 σ(r ) 0 1 ¸(r ) 0 ©(r) = 0 da(r ) ; ©(r) = 0 ds(r ) : 4¼²0 surface jr ¡ r j 4¼²0 line jr ¡ r j ² Relation to electric ¯eld E(r), potential equation: ½(r) E(r) = ¡ grad ©(r) ; ¢©(r) = ¡ : ²0 3 Magnetism ² Magnetic permeability ¹0: ¡7 Vs ¡6 Vs ¹0 = 4¼ ¢ 10 = 1:256637061 ¢ 10 : Am Am ² Current IA through surface A, current density j(r): ZZ IA(t) = j(r; t) ¢ da(r) ; j(r; t) = ½(r; t)v(r; t) : A ² Continuity equation (conservation of charge, integral and di®erential form): If ­ is a ¯nite volume and @­ its closed surface, then I ZZZ d 3 dQ­(t) @½(r; t) I@­(t) = j(r; t) ¢ da(r) = ¡ ½(r; t)d r = ¡ ; + div j(r; t) = 0 : @­ dt ­ dt @t 2 ² Electromagnetic force (point particle, charge q, velocity v): F(t) = qE(r; t) + qv(r; t) £ B(r; t) : ² Electromagnetic force density (charge and current distribution): f(r; t) = ½(r; t)E(r; t) + j(r; t) £ B(r; t) : ² Motion in uniform ¯elds (cyclotron frequency !C , drift velocity vD): qB 1 ! = ; v = (E £ B) : C m D B2 ² Law of Biot-Savart (static current distribution j(r)): ZZZ ¹ j(r0) £ (r ¡ r0) B(r) = 0 d3 r0 : 4¼ jr ¡ r0j3 ² Law of Biot-Savart (static current I in a wire loop, local direction of current ^t(r)): I ¹ I ^t(r0) £ (r ¡ r0) B(r) = 0 ds(r0 0 3 ) : 4¼ loop jr ¡ r j ² Vector potential (static currrent density distribution): ZZZ 0 ¹0 j(r ) 3 0 A(r) = 0 d r : 4¼ jr ¡ r j ² Relation to magnetic ¯eld B(r), potential equation (magnetostatics): B(r) = rot A(r) ; ¢A(r) = ¡¹0j(r) : ² Magnetic flux through closed surface @­: I I £ ¤ B(r; t) ¢ da(r) = B(r; t) ¢ n^(r) da(r) = 0 ; div B(r; t) = 0 : @­ @­ ² Amp`ere's law (integral and di®erential forms): For a closed loop @A enclosing a surface A, I ZZ ZZ d B(r; t) ¢ dr = ¹0 j(r; t) ¢ da(r) + ² 0¹0 E(r; t) ¢ da(r) ; @A A dt A @E(r; t) rot B(r; t) = ¹0j(r; t) + ² 0¹0 : @t 4 Electromagnetic Induction ² Faraday's law (integral and di®erential forms): For a closed loop @A enclosing a surface A, I ZZ d @B(r; t) E(r; t) ¢ dr = ¡ B(r; t) ¢ da(r) ; rot E(r; t) = ¡ : @A dt A @t 3 5 Maxwell's Equations, Electromagnetic Waves ² Maxwell's laws (di®erential form): ½(r; t) @B(r; t) div E(r; t) = ; rot E(r; t) = ¡ ; ²0 @t @E(r; t) div B(r; t) = 0 ; rot B(r; t) = ¹0j(r; t) + ²0 ¹0 : @t ² Plane waves in a vector ¯eld: (wave vector k, angular frequency !, velocity c, amplitude u): u(r; t) = u0 cos(k ¢ r ¡ !t + Á) ; 2¼ ! ¸ = ; f = ;! = cjkj : jkj 2¼ ² Speed of light in vacuum: 1 8 m c0 = p = 2:99792458 ¢ 10 : ²0 ¹0 s ² Electromagnetic waves (linearly polarized, in vacuum): E(r; t) = E0 cos(k ¢ r ¡ !t + Á) ; B(r; t) = B0 cos(k ¢ r ¡ !t + Á) ; 1 jE(r; t)j E0 ? k ; B0 = (k £ E0) ; jB(r; t)j = : ! c0 ² Energy density in the electromagnetic ¯eld: ² 0 2 1 2 u(r; t) = E(r; t) + B(r; t) : 2 2¹0 ² Energy flux density in the electromagnetic ¯eld (Poynting vector): 1 £ ¤ P(r; t) = E(r; t) £ B(r; t) : ¹0 ² Energy conservation in the electromagnetic ¯eld (continuity equation): @u(r; t) + div P(r; t) = ¡j(r; t) ¢ E(r; t) : @t 6 Potentials ² Representation of ¯elds through potentials: @A(r; t) E(r; t) = ¡ grad ©(r; t) ¡ ; B(r; t) = rot A(r; t) : @t ² Gauge transformations: ¡ ¢ For an arbitrary gauge ¯eld Â(r; t), the potentials ©(r; t); A(r; t) and: @Â(r; t) ©0(r; t) = ©(r; t) ¡ ; A0(r; t) = A(r; t) + grad Â(r; t) ; @t represent the same ¯elds E(r; t), B(r; t). 4 ² Field equations for the potentials: µ 2 ¶ µ ¶ 1 @ ©(r; t) @ 1 @©(r; t) ½(r; t) 2 2 ¡ ¢©(r; t) ¡ 2 + div A(r; t) = ; c0 @t @t c0 @t ² 0 µ 2 ¶ µ ¶ 1 @ A(r; t) 1 @©(r; t) 2 2 ¡ ¢A(r; t) + grad 2 + div A(r; t) = ¹0j(r; t) : c0 @t c0 @t ² Four-vector notation: ¹ Covariant vectors A and contravariant vectors A¹ (¹ = 0; 1; 2; 3): 0 1 2 3 0 0 (A ;A ;A ;A ) = (A ; A) = (A ;Ax;Ay ;Az) ; 0 0 (A0;A1;A2;A3) = (A ; ¡A) = (A ; ¡Ax; ¡Ay; ¡Az) : ¹ ¹ Contraction (inner product) of two four-vectors A , B : ¹ 0 1 2 3 0 0 1 1 2 2 3 3 0 0 A¹ B = A0B + A1B + A2B + A3B = A B ¡ A B ¡ A B ¡ A B = A B ¡ A ¢ B : ¹ Invariant length s(A) of a four-vector A : ¹ 0 2 1 2 2 2 3 2 0 2 2 s(A) = A¹A = (A ) ¡ (A ) ¡ (A ) ¡ (A ) = (A ) ¡ A : ¹ Four-gradients @ , @¹: µ ¶ µ ¶ ¡ 0 1 2 3¢ 1 @ 1 @ @ @ @ @ ;@ ;@ ;@ = ; ¡r = ; ¡ ; ¡ ; ¡ ; c0 @t c0 @t @x @y @z µ ¶ µ ¶ ¡ ¢ 1 @ 1 @ @ @ @ @0;@1;@2;@3 = ; r = ; ; ; ; c0 @t c0 @t @x @y @z Four-divergence: 0 1 2 3 0 ¹ 1 @A @A @A @A 1 @A @¹ A = + + + = + r ¢ A : c0 @t @x @y @z c0 @t D'Alembert operator ¤ and wave equation: 2 ¹ 1 @ ¤ = @¹@ = 2 2 ¡ ¢ ; c0 @t µ 2 ¶ ¹ 1 @ ¤Ã(r; t) = @¹@ Ã(r; t) = 2 2 ¡ ¢ Ã(r; t) = 0 : c0 @t ² Potential and current four-vectors: ¹ ¡ ©(r; t) ¢ ¹ ¡ ¢ A (r; t) = ; A(r; t) ; j (r; t) = c0½(r; t); j(r; t) : c0 ² Continuity equation for charge (four-vector form): ¹ @¹j (r; t) = 0 : ² Gauge transformation of potential (four-vector form): 0 ¹ ¹ ¹ (A ) (r; t) = A (r; t) ¡ @ Â(r; t) : ² Field equations (covariant form): For each º = 0; 1; 2; 3, ¡ ¹¢ º º ¡ ¹ ¢ º @¹@ A (r; t) ¡ @ @¹A (r; t) = ¹0j (r; t) : 5 ² Field tensor: ¹º º¹ ¹ º º ¹ ¹º º F (r; t) = ¡F (r; t) = @ A (r; t) ¡ @ A (r; t) ;@¹F (r; t) = ¹0j (r; t) : ² Lorentz gauge and wave equation for potentials: ¹ ¹ º º @¹A (r; t) = 0 ;@¹@ A (r; t) = ¹0j (r; t) : ² Retarded (¡) and advanced (+) solutions of wave equations: ZZZ 3 0 µ 0 ¶ ¹ ¹0 d r ¹ 0 jr ¡ r j A (r; t) = 0 j r ; t § : 4¼ jr ¡ r j c0 ² Far ¯elds of moving particle 0 (charge q, distance R = jRj = jr ¡ r j, acceleration at retarded time a = a(t ¡ R=c0)): ¹0q e^R £ (e^R £ a) ¹0q e^R £ a E(r; t) » ; B(r; t) »¡ : 4¼ R 4¼c0 R ² Energy flux distribution in the far ¯eld limit (angle θ between R and a): ¹ q2 a2 sin2 θ 0 ^ P(r; t) » 2 2 eR : 16¼ R c0 ² Total radiated power (Larmor formula): 2 2 ¹0q a P (t) = : 6¼c0 7 Special Relativity ¹ ² Space-time four-vector x : ¹ ¡ 0 1 2 3¢ ¡ ¢ ¡ ¢ x = x ; x ; x ; x = c0t; x; y; z = c0t; r : ² Invariant distance s between events: ¹ 2 2 2 s = (¢x)¹(¢x) = c 0 (¢t) ¡ (¢r) : ² The abbreviations ¯ and γ: v 1 1 ¯ = ; γ =p = p : c 2 2 2 0 1 ¡ ¯ 1 ¡ v =c0 ² Time dilation: If ¢¿ is the \proper" time interval in the stationary frame (¢r = o), then the time 0 interval ¢t in a moving frame is: 0 ¢¿ ¢t = γ¢¿ = p : 2 2 1 ¡ v =c0 0 ² Length contraction: If ¢x is the \proper" length of a moving yardstick (with ends marked synchro- 0 nously, ¢t = 0), then the length ¢x of the yardstick in its rest frame is given by: 0 0 ¢x ¢x = γ¢x = p : 2 2 1 ¡ v =c0 6 ² Lorentz¡ transformation¢ (for space-time events): If c0¢t; ¢r is the separation of two space-time events for one observer, then another observer¡ moving¢ 0 0 with uniform relative velocity v in x direction (Lorentz boost) will ¯nd the separation c0¢t ; ¢r : 0 0 0 0 c0¢t = γ (c0¢t + ¯¢x) ; ¢x = γ (¢x + v¢t) ; ¢y = ¢y ; ¢z = ¢z : ² Lorentz transformation (for general four-vectors): ¡ ¢ ¹ 0 If A = A ; A is a four-vector, it will transform under a change into a ¡frame moving¢ at uniform 0 ¹ 0 0 0 relative velocity v in x direction (Lorentz boost) to the four-vector (A ) = (A ) ; A : 0 0 ¡ 0 1¢ 1 0 ¡ 1 0¢ 2 0 2 3 0 3 (A ) = γ A + ¯A ; (A ) = γ A + ¯A ; (A ) = A ; (A ) = A : ² Relativistic velocity addition: 0 If u = (ux; uy; uz ) is the velocity of an object in the \unprimed" frame, then the velocity u of the same object observed in a frame moving at uniform relative velocity v in x direction (Lorentz boost) is: 0 ux + v 0 uy 0 uz ux = 2 ; u y = 2 ; u z = 2 : 1 + uxv=c0 γ(1 + uxv=c0 ) γ(1 + uxv=c0 ) ² Relativistic transformation of angles: 0 If an object moves with velocity u under an angle θ with respect to the x axis,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us