RATTAN SPINY MORPHOLOGY AND LITTER COLLECTING STRUCTURES IN ASSOCIATION WITH ANT COLONIES LIU KUNPENG UNIVERSITI SAINS MALAYSIA 2019 RATTAN SPINY MORPHOLOGY AND LITTER COLLECTING STRUCTURES IN ASSOCIATION WITH ANT COLONIES by LIU KUNPENG Thesis submitted in fulfillment of the requirements for the degree of Master of Science June 2019 ACKNOWLEDGEMENT First and foremost, I would like to express my sincere gratitude to my supervisors, Dr. Nik Fadzly N Rosely, Dr. Asyraf Mansor, Dr. Nadine Ruppert and Prof. Lee Chow Yang. Without their assistance and dedicated involvement in every step throughout the process, this thesis would have never been accomplished. I really need to thank my supervisors’ dedicated guidance not only in my research project, but also in giving me the knowledge that will benefit my entire life. Besides my supervisors, I would like to thank Dr. Foong Swee Yeok for always discussing with me and giving me advice in my research and daily life. In addition, I need thank Dr. Hasnuri Mat Hassan, Prof. Aileen Tan Shau Hwai and Dr. Faradina Merican Mohd Sidik Merican for teaching and offering me favours in different fields. I also need thank all the facilities and assistance from all stuff of School of Biological Sciences, University Science Malaysia. My sincere thanks also go to my friends, labmates and former coursemates who gave me plenty of unforgettable memories. I really appreciate Kathrine Tan for helping me translate my abstract. Not to forget my friend Sangsang for numerous conversation that touched the deepest of my heart. I am heartily thankful to my family, especially my parents, for supporting me not only financially but also mentally even they are thousands of miles away. Thank you for your tremendous love and understanding to let your only son study abroad without worries. Lastly, I offer my regards and blessing to everyone who I met in any respect during the completion of this study! iii TABLE OF CONTENTS Acknowledgement ii Table of contents iii List of Tables v List of Figures vi Abstrak ix Abstract xi CHAPTER 1 GENERAL INTRODUCTION 1.1 Background study 1 1.2 General Objectives 3 1.3 Thesis Structure 4 CHAPTER 2 LITERALTURE REVIEW 2.1 Plant Defensive Mechanisms 6 2.2 Ant-Plant Interactions 20 2.3 Rattan 28 CHAPTER 3 GENERAL METHODOLOGY 34 CHAPTER 4 WHO IS BETTER DEFENDED? SPINESCENCE MEASUREMNT ON 5 RATTAN SPECIES 4.1 Introduction 38 4.2 Method and Materials 40 4.3 Results 44 4.4 Discussion 54 iii CHAPTER 5 ANT-RATTAN ASSOCIATIONS 5.1 Introduction 63 5.2 Method and Materials 64 5.3 Results 64 5.4 Discussion 72 CHAPTER 6 RECYCLING IN THE FOREST: RATTAN LITTER COLLECTION AND RELATIONSHIPS WITH ANTS 6.1 Introduction 76 6.2 Method and Materials 77 6.3 Results 78 6.4 Discussion 84 CHAPTER 7 GENERAL DISCUSSION 88 CHAPTER 8 GENERAL CONCLUSION AND FURTHER STUDIES 94 REFERENCE 97 APEENDICES LIST OF PUBLICATIONS vi LIST OF TABLES Page Table 4.1 Table 4.1. Spine length mean value of rattan species 44 Table 4.2 Spine width mean value of rattan species 45 Table 4.3 Spine angle mean value of rattan species 48 Table 4.4 Spine angle mean value of rattan species 49 Table 4.5 Leaf hairs measurement of D. lewisiana 54 Table 4.6 Leaf hairs measurement of C. castaneus 54 Table 4.7 Leaf hairs measurement of D. geniculate 54 Table 5.1 Ant genera found on various rattan species 65 Table 6.1 Mean value inclination of rattan spines 79 Table 6.2 Angles of different paired leaflets in rattan species 82 vii LIST OF FIGURES Page Figure 3.1 Study site locations at (a) Bukit Genting Hill, 34 (b) Penang National Park, (c) Taman rimba, Teluk Bahang and( d) Cherok Tokun, Penang Figure 3.2 Sampling track in Bukit Genting Hill 35 Figure 3.3 Sampling track in Penang National Park 36 Figure 3.4 Sampling track in Taman Rimba, Teluk Bahang 36 Figure 3.5 Sampling track in Cherok Tokun, Penang mainland 37 Figure 4.1 The vernier scale 41 Figure 4.2 The protractor 41 Figure 4.3 The digital weight scale for tensile tests 42 Figure 4.4 The Ocean Optics Jazz spectrophotometer 43 Figure 4.5 Leaf hairs of D. lewisiana 43 Figure 4.6 Spines of D. lewisiana 45 Figure 4.7 Spines of D. geniculata 46 Figure 4.8 Spines of C. castaneus 46 Figure 4.9 Spines of P. griffithii 47 Figure 4.10 Spines of K. scortechinii 47 Figure 4.11 The spectral reflectance results from 400nm to 700nm wavelength 48 Figure 4.12 Cut image of D. lewisiana 50 Figure 4.13 Cut image of D. geniculata 50 Figure 4.14 Cut image of C. castaneus 51 Figure 4.15 Cut image of P. griffithii 51 vii Figure 4.16 Cut image of K. scortechinii 52 Figure 4.17 Leaflets of K. scortechinii 59 Figure 5.1 Philidris sp. 66 Figure 5.2 Dolichoderus thoracicus 66 Figure 5.3 Crematogaster sp1. 67 Figure 5.4 Crematogaster sp2. 67 Figure 5.5 Tapinoma melanocephalum 67 Figure 5.6 Technomyrmex sp1. 67 Figure 5.7 Camponotus sp. 67 Figure 5.8 Crematogaster sp5. 67 Figure 5.9 Crematogaster sp6. 68 Figure 5.10 Crematogaster sp3. 68 Figure 5.11 Pheidole sp. 68 Figure 5.12 Technomyrmex sp2. 68 Figure 5.13 Crematogaster sp4. 68 Figure 5.14 Camponotus beccarii 68 Figure 5.15 Technomyrmex sp3. 69 Figure 5.16 Cerataphis orchidearum 69 Figure 5.17 Live Dolichoderus thoracicus 69 Figure 5.18 Live Tapinoma melanocephalum 69 Figure 5.19 Live Camponotus beccarii 69 Figure 5.20 Live Crematogaster sp. 69 Figure 5.21 Ant genus that associated with rattan species 70 vii Figure 5.22 (a) Yellow crazy ants (Anoplolepis gracilipes) were tending 71 aphids (Cerataphis sp.) on rattan D. lewisiana; (b) Dolichoderus thoracius gathered in the knee area of Calamus diepenhorstii. Figure 5.23 Dendrogram using Jaccard’s Coefficient similarities based on 71 the ant genus in four rattan species Figure 5.24 (a) Ants (Dolichoderus) inside a female flower of 75 Daemonorops lewisiana. (b) Ants (Philidris) inside a male flower of Daemonorops lewisiana. Figure 6.1 Inclination of rattan spines: (a) P. griffithii (mean 65.5°); 80 (b) Calamus castaneus (mean 103°); (c) Daemonorops lewisiana (mean 138°) Figure 6.2 (a) Little amount of leaf litter trapped by P.graffithii; 81 (b) Extensive amount of leaf litter collected and trapped by C. castaneus Figure 6.3 Leaflet angle of Calamus castaneus from the upper part 82 to bottom part (from 3 to 1) is becoming smaller Figure 6.4 (a) A protruding leaflet growing on the middle of the rachis 83 that may hinder leaf debris from falling. (b) The leaf of Plectocomia griffithii does not collect leaf debris or harbour ant colonies. Figure 6.5 (a) Leaf litter trapped on the bottom part of 83 Daemonorops lewisiana leaves. (b) Ant colony on the debris of leaves trapped by Calamus castaneus. ix MORFOLOGI DURI ROTAN DAN STRUKTUR PENGUMPUL SARAP YANG BERKAITAN DENGAN KOLONI SEMUT ABSTRAK Rotan merupakan pokok palma yang biasa dijumpai di hutan Malaysia tetapi tumbuhan ini jarang diketahui ramai selain dari nilai ekonomiknya dalam pembuatan perabot dan tikar. Banyak spesies rotan mempunyai duri yang banyak dan aturan yang berlainan. Tetapi, kurang ada kajian dilakukan mengenai aspek struktur dan keunikan fungsi duri. Kajian ini memfokuskan stuktur duri rotan yang terdapat pada lima spesies rotan yang biasa dijumpai di bahagian utara Semenanjung Malaysia, iaitu Daemonorops lewisiana, Daemonorops geniculata, Calamus castaneus, Plectomia griffithii dan Korthalsia scortechinii. Panjang, lebar, sudut condong, kepadatan dan kekuatan duri rotan telah diukur serta dibanding sesama lain untuk mengetahui spesies yang mana mempunyai keupayaan yang paling bagus dalam melindungi rotan tersebut. Ciri-ciri rambut daun pada D. geniculata, D. lewisiana, dan C. castaneus telah direkod. Tidak ada spesies rotan mempunyai struktur pertahanan yang jauh lebih baik berbanding spesies lain dan hal ini disebabkan setiap spesies mempunyai kelebihan tersendiri. D. geniculata mempunyai duri yang paling panjang; D. lewisiana mempunyai duri yang paling kuat; duri pada C. castaneus mempunyai kepadatan yang paling tinggi dan duri yang berarah ke bawah pada P. griffithii mungkin berkesan dalam menghalang binatang mamalia pemanjat kecil. Tiada ciri yang unik terdapat pada struktur duri K. scortechinii tetapi duri spesies ini masih dapat mempertahankan dirinya dengan koloni semut yang mendiami pada stuktur okrea duri spesies ini. Rotan bergantung pada pelbagai jenis strategi pertahanan dan struktur duri x merupakan salah satu strategi pertahanan. Dalam kajian ini, banyak koloni semut telah dijumpai pada spesies rotan tertentu. Kajian seterusnya memfokuskan hubungan antara rotan dengan semut, spesies semut yang terdapat pada empat spesies (D. geniculata, D. lewisiana, C. castaneus, and K. scortechinii). Tiada bukti yang menunjukkan bahawa terdapat hubungan obligat antara rotan dan spesies semut. Spesies semut yang berlainan telah dijumpai pada rotan dan semut-semut tersebut mempunyai fungsi yang berbeza. Tetapi, tiada koloni semut didapati pada spesies P. griffithii. Kecuali K. scortechinii yang menyediakan domatia (okrea yang berkembang) kepada koloni semut, tiga spesies yang lain tidak menyediakan stuktur yang sama kepada koloni semut tetapi koloni semut dapat dijumpai dalam sampah dedaun yang jatuh pada stuktur duri dan daun. Terdapat lebih banyak koloni semut pada rotan yang menyimpan sampah dedaun (D. lewisiana dan C. castaneus) berbanding dengan jenis rotan yang tidak menyimpan sampah dedaun (P. griffithii). Bab yang selanjutnya memberi fokus pada perbezaan struktur duri and anak daun yang terpadat pada dua jenis rotan. Keputusan menunjukkan bahawa P. griffithii tidak memiliki struktur yang dapat menyimpan sampah dedaun (duri yang tunjuk ke atas dan daun yang berupa corong), jadi spesies ini tidak dapat menyimpan sampah daun dari kanopi.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages128 Page
-
File Size-