The Periodogram • Recall: the Discrete Fourier Transform D Ωj = N Xte , J = 0

The Periodogram • Recall: the Discrete Fourier Transform D Ωj = N Xte , J = 0

The Periodogram • Recall: the discrete Fourier transform n −1=2 X −2πi! t d !j = n xte j ; j = 0; 1; : : : ; n − 1; t=1 • and the periodogram 2 I !j = d !j ; j = 0; 1; : : : ; n − 1; • where !j is one of the Fourier frequencies j ! = : j n 1 Sine and Cosine Transforms • For j = 0; 1; : : : ; n − 1, n −1=2 X −2πi! t d !j = n xte j t=1 n n −1=2 X −1=2 X = n xt cos 2π!jt − i × n xt sin 2π!jt t=1 t=1 = dc !j − i × ds !j : • dc !j and ds !j are the cosine transform and sine trans- form, respectively, of x1; x2; : : : ; xn. 2 2 • The periodogram is I !j = dc !j + ds !j . 2 Sampling Distributions • For convenience, suppose that n is odd: n = 2m + 1. • White noise: orthogonality properties of sines and cosines mean that dc(!1), ds(!1), dc(!2), ds(!2),..., dc(!m), ds(!m) 1 2 have zero mean, variance 2σw, and are uncorrelated. • Gaussian white noise: dc(!1), ds(!1), dc(!2), ds(!2),..., 1 2 dc(!m), ds(!m) are i.i.d. N 0; 2σw . 1 2 2 • So for Gaussian white noise, I !j ∼ 2σw × χ2. 3 • General case: dc(!1), ds(!1), dc(!2), ds(!2),..., dc(!m), ds(!m) have zero mean and are approximately uncorrelated, and h i h i 1 var dc !j ≈ var ds !j ≈ 2fx !j ; where fx !j is the spectral density function. • If xt is Gaussian, 2 2 Ix !j dc !j + ds !j = approximately 2 1 1 ∼ χ2; 2fx !j 2fx !j and Ix(!1), Ix(!2),..., Ix(!m) are approximately indepen- dent. 4 Spectral ANOVA • For odd n = 2m + 1, the inverse transform can be written m 2 X h i xt − x¯ = p dc !j cos 2π!jt + ds !j sin 2π!jt : n j=1 • Square and sum over t; orthogonality of sines and cosines implies that n m X 2 X 2 2 (xt − x¯) = 2 dc !j + ds !j t=1 j=1 m X = 2 I !j : j=1 5 ANOVA table: Source df SS MS !1 2 2I(!1) I(!1) !2 2 2I(!2) I(!2) . !m 2 2I(!m) I(!m) P 2 Total 2m = n − 1 (xt − x¯) 6 Hypothesis Testing • Consider the model xt = A cos 2π!jt + φ + wt: • Hypotheses: { H0 : A = 0 ) xt = wt, white noise; { H1 : A > 0, white noise plus a sine wave. • Note: no autocorrelation in either case. 7 • Two cases: { !j known: use I !j F = j −1 P (m − 1) j06=j I !j0 which is F2;2(m−1) under H0. { !j unknown: use max(F1;F2;:::;Fm), or equivalently n o max I !j ; j = 1; 2; : : : ; n κ = −1 P m j I !j and ( " (m − 1 − log m)#) P(κ > ξ) ≈ 1 − exp −m exp −ξ : m − ξ 8 Example: the Southern Oscillation Index • Using SAS: proc spectra program and output. • Using R: par(mfcol = c(2, 1)) # Use fft() to calculate the periodogram directly; note that # frequencies are expressed in cycles per year, and the # periodogram values are similarly scaled by 12: freq = 12 * (0:(length(soi) - 1)) / length(soi) plotit = (freq > 0) & (freq <= 6) soifft = fft(soi) / sqrt(length(soi)) plot(freq[plotit], Mod(soifft[plotit])^2 / 12, type = "l") # Use spectrum(); override some defaults to make it match: spectrum(soi, log = "no", fast = FALSE, taper = 0, detrend = FALSE) 9.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    9 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us