Coll032-Endmatter.Pdf

Coll032-Endmatter.Pdf

http://dx.doi.org/10.1090/coll/032 AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME 32 Topology of Manifolds Raymond Louis Wilder American Mathematical Society Providence, Rhode Island International Standard Seria l Numbe r 0065-925 8 International Standar d Boo k Number 0-8218-1032- 4 Library o f Congress Catalog Card Numbe r 49-672 2 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s actin g for them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customary acknowledgmen t o f the source i s given. Republication, systematic copying, or multiple reproduction o f any material i n this publicatio n (including abstracts ) i s permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Requests fo r suc h permissio n shoul d b e addresse d t o th e Assistan t t o th e Publisher , America n Mathematical Society , P.O . Bo x 6248 , Providence , Rhod e Islan d 02940-6248 . Request s ca n als o be mad e b y e-mail t o reprint-permissionQmath.ams.org . Copyright © 1949 , 196 3 by the American Mathematica l Societ y Revised edition, 196 3 Revised edition , fourt h printing , with corrections, 197 9 The America n Mathematica l Societ y retain s al l right s except thos e grante d to the United States Government . Printed i n the Unite d State s of America . @ Th e pape r use d i n this book i s acid-free an d fall s withi n th e guideline s established to ensure permanence and durability . 10 9 8 7 6 0 1 0 0 9 9 9 8 TABLE O F CONTENT S PREFACE . vi i INTRODUCTION T O THE 196 3 EDITIO N x i NOTES T O THE 196 3 EDITIO N x i NOTES T O TH E 197 9 PRINTIN G xii i I. ELEMENTAR Y CONCEPTS ; CHARACTERIZATION S O F E l AN D S l 1 1. Set s 1 2. Space s 2 3. Metri c space s 4 4. Close d and open subsets o f a space 5 5. Mappings ; homeomorphisms 6 6. Historica l remark s 1 0 7. Connecte d space s 1 6 8. Components ; quasi-components 1 8 9. Connecte d spaces satisfying the 2nd Hausdorff axio m and the weak separation axiom 1 9 10. Space s irreducibly connected abou t a subset 2 1 11. Th e simple ar c and the 1-spher e 2 7 12. Som e fundamental lemma s 3 3 IL LOCALL Y CONNECTED SPACES ; FUNDAMENTAL PROPERTIES OF THE EUCUDEAN TI-SPHER E 4 0 1. Loca l connectedness 4 0 2. Irreducibl e lc-connexes; recognition o f E l an d S 1 amon g lc spaces ... 4 2 3. Som e general properties o f lc spaces . 4 5 4. "Phragmen-Brouwe r properties " and their equivalence in lc spaces .... 4 7 5. Som e topology o f th e n-spher e 5 1 III. PEAN O SPACES ; CHARACTERIZATION S O F S* AN D TH E 2-MANIFOLD S 6 9 1. Pean o continua ; mapping theorems 6 9 2. Topologica l characterizatio n o f Peano continu a 7 4 3. Pean o spaces 7 6 4. Recognitio n o f the 2-spher e 8 7 5. Recognitio n o f th e close d 2-cell 9 2 6. Recognitio n o f the 2-manifolds . • 9 4 IV. NON-METRI C L C SPACES, WIT H APPLICATION S T O SUBSET S O F TH E 2-SPHER E .. 9 9 1. Component s o f locall y compac t Hausdorf f space s 9 9 2. A characterization o f locally compact, connecte d space s that fai l to be l c 10 2 3. Som e characterizations o f locally compac t l c spaces 10 4 4. Relation s between lc , S and ulc properties 10 7 5. Accessibilit y 11 0 6. Mor e properties o f the 2-sphere 11 2 7. Recognitio n o f Pean o continua i n S* by accessibilit y propertie s 11 6 8. Remark s 11 8 iii iv TABL E O F CONTENT S V. BASI C ALGEBRAI C TOPOLOG Y 12 0 1. Complexe s 12 0 2. Algebrai c apparatu s 12 0 3. Chai n groups 12 2 4. Homolog y group s 12 3 5. Importan t specia l case s and geometric interpretation s 12 4 6. Som e fundamental lemma s 12 6 7. Cec h cycles and homolog y group s 12 9 8. Coverin g lemma s 13 3 9. Vecto r spaces 13 5 10. Existenc e theorem s 13 8 11. Som e applications t o connectedness an d local connectednes s 14 1 12. Fundamenta l system s o f cycle s fo r a compact metri c spac e 14 5 13. Alternativ e definition s 14 6 14. Dua l homomorphism s 14 8 15. Cocycles ; cohomology group s 14 9 16. Chai n product s fo r a complex 15 3 17. Extensio n to topological space s 15 6 18. Scala r products and dua l pairing s 15 9 19. Application s to homology propertie s o f spaces 16 7 20. Homologie s i n non-compact space s 16 8 21. Approximat e homologie s . 17 2 VI. LOCA L CONNECTEDNES S AN D LOCA L CO-CONNECTEDNES S 17 6 1. Loca l connectedness in dimensio n n 17 6 2. Chain-realization s 17 7 3. Complex-lik e characte r o f compac t lc n spaces 18 0 4. Non-compac t case s 18 3 5. Fundamenta l system s o f cycle s • 18 5 6. Loca l co-connectedness; local connectivity number s and local dualities . 18 9 7. Propert y (P , Q) n , . 19 3 8. Othe r types o f highe r dimensional loca l connectednes s 19 8 VII. APPLICATIO N OF HOMOLOGY AND COHOMOLOG Y THEORY T O THE THEORY OF CONTINUA 20 0 1. Fundamenta l lemma s 20 0 2. Existenc e lemma s regardin g carrier s of cycle s and homologies 20 4 3. Separation s o f continu a by close d subsets 21 1 4. Non-r-cu t an d r-avoidable point s 21 8 5. r-extendabilit y 22 4 6. Non-cut-point s an d avoidable point s 22 7 7. Propert y £„ 23 4 8. Set-avoidabilit y 23 8 9. A n additio n theore m 24 1 VIII. GENERALIZE D MANIFOLDS ; DUALITIE S O F THE POINCAR E AN D ALEXANDE R TYP E . 24 4 1. Genera l propertie s 24 4 2. Orientabilit y 24 6 3. Th e orientabl e n-gc m 25 0 4. Th e Poincar S dualit y fo r an orientabl e n-gc m 25 2 5. Th e ope n n-gm 25 4 6. Th e Alexande r type o f dualit y fo r a closed subset o f a n n-gcm. Firs t proo f 26 1 7. Th e Alexander type of duality for a closed subset of an n-gcm. Secon d proof 26 3 8. Linkin g theorem s 26 6 9. A dualit y fo r non-closed set s 26 9 TABLE O F CONTENT S v IX. FURTHE R PROPERTIE S O F n-GMs ; REGULA R MANIFOLD S AN D GENERALIZE D TI-CELL S 27 1 1. Cas e n = 1 27 1 2. Cas e n = 2 27 2 3. Avoidabilit y propertie s 27 2 4. Characterizatio n b y mean s o f loca l linking 27 4 5. Th e cas e n = 2 without th e orientability conditio n 27 5 6. Th e general non-orientable cas e 28 0 7. Compariso n o f the case n > 2 with the classical case; regular manifold s an d generalized n-cell s 28 2 X. SUBMANIFOLD S OF A MANIFOLD; DECOMPOSITIO N INT O CELL S 29 0 1. Positiona l invariants 29 1 2. Unifor m loca l co-connectedness; duality o f r-ul c and ( n — r)-coulc .... 29 2 3. Th e Jordan-Brouwer separatio n theore m i n an n-gcm , an d it s converse . 29 4 4. Generalizatio n 29 6 5. Additiona l positiona l propertie s 29 8 6. Th e boundary o f a ulc n~2 domain i n a manifol d 30 4 7. Additiona l converse s o f the Jordan-Brouwer separatio n theore m 30 7 8. Th e genera l ulc n~2 open subse t o f an n-gc m 30 9 9. Decompositio n o f the spherelik e n-gc m int o two generalized close d n-cells . 31 1 XI. Lc * SUBSET S OF A N n-G M 31 6 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    35 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us