C H a P T E R 8 Integration Techniques, L'hôpital's Rule, And

C H a P T E R 8 Integration Techniques, L'hôpital's Rule, And

CHAPTER 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 8.1 Basic Integration Rules . 95 Section 8.2 Integration by Parts . 106 Section 8.3 Trigonometric Integrals . 128 Section 8.4 Trigonometric Substitution . 141 Section 8.5 Partial Fractions . 161 Section 8.6 Integration by Tables and Other Integration Techniques . 173 Section 8.7 Indeterminate Forms and L’Hôpital’s Rule . 184 Section 8.8 Improper Integrals . 199 Review Exercises . 212 Problem Solving . 223 CHAPTER 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals Section 8.1 Basic Integration Rules d 1 Ϫ ͞ d 1 2x x 1. (a) ͓2Ίx2 ϩ 1 ϩ C͔ ϭ 2΂ ΃͑x2 ϩ 1͒ 1 2͑2x͒ 2. (a) ͓lnΊx2 ϩ 1 ϩ C͔ ϭ ΂ ΃ ϭ dx 2 dx 2 x2 ϩ 1 x2 ϩ 1 2x d 2x ͑x2 ϩ 1͒2͑2͒ Ϫ ͑2x͒͑2͒͑x2 ϩ 1͒͑2x͒ ϭ (b) ΄ ϩ C΅ ϭ Ίx2 ϩ 1 dx ͑x2 ϩ 1͒2 ͑x2 ϩ 1͒4 2 d 1 Ϫ ͞ x 2͑1 Ϫ 3x ͒ (b) ͓Ίx2 ϩ 1 ϩ C͔ ϭ ͑x2 ϩ 1͒ 1 2͑2x͒ ϭ ϭ dx 2 Ίx2 ϩ 1 ͑x2 ϩ 1͒3 d 1 1 1 Ϫ ͞ d 1 (c) ΄ Ίx2 ϩ 1 ϩ C΅ ϭ ΂ ΃͑x2 ϩ 1͒ 1 2͑2x͒ (c) ͓arctan x ϩ C͔ ϭ dx 2 2 2 dx 1 ϩ x2 x d 2x ϭ (d) ͓ln͑x2 ϩ 1͒ ϩ C͔ ϭ 2Ίx2 ϩ 1 dx x2 ϩ 1 d 2x x (d) ͓ln͑x2 ϩ 1͒ ϩ C͔ ϭ ͵ dx matches (a). dx x2 ϩ 1 x2 ϩ 1 x ͵ dx matches (b). Ίx2 ϩ 1 d 1 2x x 3. (a) ͓lnΊx2 ϩ 1 ϩ C͔ ϭ ΂ ΃ ϭ dx 2 x2 ϩ 1 x2 ϩ 1 d 2x ͑x2 ϩ 1͒2͑2͒ Ϫ ͑2x͒͑2͒͑x2 ϩ 1͒͑2x͒ 2͑1 Ϫ 3x2͒ (b) ΄ ϩ C΅ ϭ ϭ dx ͑x2 ϩ 1͒2 ͑x2 ϩ 1͒4 ͑x2 ϩ 1͒3 d 1 (c) ͓arctan x ϩ C͔ ϭ dx 1 ϩ x2 d 2x (d) ͓ln͑x2 ϩ 1͒ ϩ C͔ ϭ dx x2 ϩ 1 1 ͵ dx matches (c). x2 ϩ 1 d 4. (a) ͓2x sin͑x2 ϩ 1͒ ϩ C͔͒ ϭ 2x͓cos͑x2 ϩ 1͒͑2x͔͒ ϩ 2 sin͑x2 ϩ 1͒ ϭ 2͓2x2 cos͑x2 ϩ 1͒ ϩ sin͑x2 ϩ 1͔͒ dx d 1 1 (b) ΄Ϫ sin͑x2 ϩ 1͒ ϩ C΅ ϭϪ cos͑x2 ϩ 1͒͑2x͒ ϭϪx cos͑x2 ϩ 1͒ dx 2 2 d 1 1 (c) ΄ sin͑x2 ϩ 1͒ ϩ C΅ ϭ cos͑x2 ϩ 1͒͑2x͒ ϭ x cos͑x2 ϩ 1͒ dx 2 2 d (d) ͓Ϫ2x sin͑x2 ϩ 1͒ ϩ C͔ ϭϪ2x͓cos͑x2 ϩ 1͒͑2x͔͒ Ϫ 2 sin͑x2 ϩ 1͒ ϭϪ2͓2x2 cos͑x2 ϩ 1͒ ϩ sin͑x2 ϩ 1͔͒ dx ͵x cos͑x2 ϩ 1͒ dx matches (c). 95 96 Chapter 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals 2t Ϫ 1 1 5. ͵͑3x Ϫ 2͒4 dx 6. ͵ dt 7. ͵ dx t2 Ϫ t ϩ 2 Ίx͑1 Ϫ 2Ίx ͒ u ϭ 3x Ϫ 2, du ϭ 3 dx, n ϭ 4 u ϭ t2 Ϫ t ϩ 2, du ϭ ͑2t Ϫ 1͒ dt 1 u ϭ 1 Ϫ 2Ίx, du ϭϪ dx Ί du x Use ͵un du. Use ͵ . u du Use ͵ . u 2 3 Ϫ2x 8. ͵ dt 9. ͵ dt 10. ͵ dx ͑2t Ϫ 1͒2 ϩ 4 Ί1 Ϫ t2 Ίx2 Ϫ 4 u ϭ 2t Ϫ 1, du ϭ 2 dt, a ϭ 2 u ϭ t, du ϭ dt, a ϭ 1 1 u ϭ x2 Ϫ 4, du ϭ 2x dx, n ϭϪ 2 du du Use ͵ . Use ͵ . u2 ϩ a2 Ί 2 Ϫ 2 a u Use ͵un du. 11. ͵t sin t 2 dt 12. ͵sec 3x tan 3x dx 13. ͵͑cos x͒e sin x dx u ϭ t 2, du ϭ 2t dt u ϭ 3x, du ϭ 3 dx u ϭ sin x, du ϭ cos x dx Use ͵sin u du. Use ͵sec u tan u du. Use ͵eu du. 1 14. ͵ dx 15. Let u ϭ x Ϫ 4, du ϭ dx. xΊx2 Ϫ 4 ͑x Ϫ 4͒6 u ϭ x, du ϭ dx, a ϭ 2 ͵6͑x Ϫ 4͒5 dx ϭ 6͵͑x Ϫ 4͒5 dx ϭ 6 ϩ C 6 du Use ͵ . ϭ ͑x Ϫ 4͒6 ϩ C uΊu2 Ϫ a2 16. Let u ϭ t Ϫ 9, du ϭ dt. 17. Let u ϭ z Ϫ 4, du ϭ dz. 2 Ϫ2 5 ͑z Ϫ 4͒Ϫ4 ͵ dt ϭ 2͵͑t Ϫ 9͒Ϫ2 dt ϭ ϩ C ͵ dz ϭ 5͵͑z Ϫ 4͒Ϫ5 dz ϭ 5 ϩ C ͑t Ϫ 9͒2 t Ϫ 9 ͑z Ϫ 4͒5 Ϫ4 Ϫ5 ϭ ϩ C 4͑z Ϫ 4͒4 1 1 18. Let u ϭ t3 Ϫ 1, du ϭ 3t2 dt. 19. ͵ ΄v ϩ ΅ dv ϭ ͵v dv ϩ ͵͑3v Ϫ 1͒Ϫ3͑3͒ dv ͑3v Ϫ 1͒3 3 1 ͵ t 2Ί3 t3 Ϫ 1 dt ϭ ͵͑t 3 Ϫ 1͒1͞3͑3t 2͒ dt 1 1 3 ϭ v2 Ϫ ϩ C 2 6͑3v Ϫ 1͒2 1 ͑t 3 Ϫ 1͒4͞3 ϭ ϩ C 3 4͞3 ͑t 3 Ϫ 1͒4͞3 ϭ ϩ C 4 3 3 20. ͵ ΄x Ϫ ΅ dx ϭ ͵x dx Ϫ ͵ ͑2x ϩ 3͒Ϫ2͑2͒ dx 21. Let u ϭϪt3 ϩ 9t ϩ 1, du ϭ ͑Ϫ3t2 ϩ 9͒ dt ϭ ͑2x ϩ 3͒2 2 Ϫ3͑t2 Ϫ 3͒ dt. x2 3 ͑2x ϩ 3͒Ϫ1 ϭ Ϫ ϩ C t 2 Ϫ 3 1 Ϫ3͑t 2 Ϫ 3͒ 2 2 Ϫ1 ͵ dt ϭϪ ͵ dt Ϫt3 ϩ 9t ϩ 1 3 Ϫt3 ϩ 9t ϩ 1 x2 3 ϭ ϩ ϩ C 1 2 2͑2x ϩ 3͒ ϭϪ lnԽϪt3 ϩ 9t ϩ 1Խ ϩ C 3 Section 8.1 Basic Integration Rules 97 x2 1 22. Let u ϭ x2 ϩ 2x Ϫ 4, du ϭ 2͑x ϩ 1͒ dx. 23. ͵ dx ϭ ͵͑x ϩ 1͒ dx ϩ ͵ dx x Ϫ 1 x Ϫ 1 ϩ x 1 1 Ϫ ͞ ͵ dx ϭ ͵͑x2 ϩ 2x Ϫ 4͒ 1 2͑2͒͑x ϩ 1͒ dx 1 Ίx2 ϩ 2x Ϫ 4 2 ϭ x2 ϩ x ϩ lnԽx Ϫ 1Խ ϩ C 2 ϭ Ίx2 ϩ 2x Ϫ 4 ϩ C 2x 8 24. ͵ dx ϭ ͵2 dx ϩ ͵ dx 25. Let u ϭ 1 ϩ ex, du ϭ ex dx. x Ϫ 4 x Ϫ 4 ex ϭ 2x ϩ 8 lnԽx Ϫ 4Խ ϩ C ͵ dx ϭ ln͑1 ϩ ex͒ ϩ C 1 ϩ ex 1 1 1 1 1 1 26. ͵΂ Ϫ ΃ dx ϭ ͵ ͑3͒ dx Ϫ ͵ ͑3͒ dx 3x Ϫ 1 3x ϩ 1 3 3x Ϫ 1 3 3x ϩ 1 1 1 1 3x Ϫ 1 ϭ lnԽ3x Ϫ 1Խ Ϫ lnԽ3x ϩ 1Խ ϩ C ϭ ln ϩ C 3 3 3 Խ3x ϩ 1Խ 4 4 x 27. ͵͑1 ϩ 2x2͒2 dx ϭ ͵͑4x 4 ϩ 4x2 ϩ 1͒ dx ϭ x5 ϩ x3 ϩ x ϩ C ϭ ͑12x 4 ϩ 20x2 ϩ 15͒ ϩ C 5 3 15 1 3 3 3 1 3 1 1 1 28. ͵x΂1 ϩ ΃ ϭ ͵x΂1 ϩ ϩ ϩ ΃ dx ϭ ͵΂x ϩ 3 ϩ ϩ ΃ dx ϭ x2 ϩ 3x ϩ 3 lnԽxԽ Ϫ ϩ C x x x2 x3 x x2 2 x 1 29. Let u ϭ 2␲x2, du ϭ 4␲x dx. 30. ͵sec 4x dx ϭ ͵sec͑4x͒͑4͒ dx 4 1 ͵x͑cos 2␲ x2͒ dx ϭ ͵͑cos 2␲ x2͒͑4␲x͒ dx 1 4␲ ϭ lnԽsec 4x ϩ tan 4xԽ ϩ C 4 1 ϭ sin 2␲x2 ϩ C 4␲ 31. Let u ϭ ␲x, du ϭ ␲ dx. 32. Let u ϭ cos x, du ϭϪsin x dx. 1 sin x ͵csc͑␲x͒ cot͑␲x͒ dx ϭ ͵csc͑␲x͒ cot͑␲x͒␲ dx ͵ dx ϭϪ͵͑cos x͒Ϫ1͞2͑Ϫsin x͒ dx ␲ Ίcos x ϭϪ Ί ϩ ϭϪ1 ͑␲ ͒ ϩ 2 cos x C ␲ csc x C 33. Let u ϭ 5x, du ϭ 5 dx. 34. Let u ϭ cot x, du ϭϪcsc2 x dx. 1 1 ͵e5x dx ϭ ͵e5x͑5͒ dx ϭ e5x ϩ C ͵csc2 xecot x dx ϭϪ͵ecot x͑Ϫcsc2 x͒ dx ϭϪecot x ϩ C 5 5 5 1 eϪx 35. Let u ϭ 1 ϩ e x, du ϭ e x dx. 36. ͵ dx ϭ 5͵΂ ΃΂ ΃ dx 3ex Ϫ 2 3ex Ϫ 2 eϪx 2 1 e x ͵ dx ϭ 2͵΂ ΃΂ ΃ dx eϪx eϪx ϩ 1 eϪx ϩ 1 e x ϭ 5͵ dx 3 Ϫ 2eϪx e x ϭ 2͵ dx 5 1 1 ϩ e x ϭ ͵ ͑2eϪx͒ dx 2 3 Ϫ 2eϪx ϭ 2 ln͑1 ϩ e x͒ ϩ C 5 ϭ lnԽ3 Ϫ 2eϪxԽ ϩ C 2 98 Chapter 8 Integration Techniques, L’Hôpital’s Rule, and Improper Integrals ln x2 1 ͑ln x͒2 Ϫsin x 37. ͵ dx ϭ 2͵͑ln x͒ dx ϭ 2 ϩ C ϭ ͑ln x͒2 ϩ C 38. Let u ϭ ln͑cos x͒, du ϭ dx ϭϪtan x dx. x x 2 cos x ͵ ͑tan x͒͑ln cos x͒ dx ϭϪ͵ ͑ln cos x͒͑Ϫtan x͒ dx Ϫ͓ln͑cos x͔͒2 ϭ ϩ C 2 1 ϩ sin x 1 ϩ sin x 1 Ϫ sin x 39. ͵ dx ϭ ͵ и dx Alternate Solution: cos x cos x 1 Ϫ sin x 1 ϩ sin x 1 Ϫ sin2 x ͵ dx ϭ ͵͑sec x ϩ tan x͒ dx ϭ ͵ dx cos x cos x͑1 Ϫ sin x͒ ϭ lnԽsec x ϩ tan xԽ ϩ lnԽsec xԽ ϩ C cos2 x ϭ ͵ dx cos x͑1 Ϫ sin x͒ ϭ lnԽsec x͑sec x ϩ tan x͒Խ ϩ C Ϫcos x ϭϪ͵ dx 1 Ϫ sin x ϭϪlnԽ1 Ϫ sin xԽ ϩ C, ͑u ϭ 1 Ϫ sin x͒ 1 ϩ cos ␣ 40.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    138 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us