Advanced Control Methodology for Biomass Combustion

Advanced Control Methodology for Biomass Combustion

Advanced Control Methodology for Biomass Combustion Stefan Bjornsson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering University of Washington 2014 Committee: Igor V. Novosselov, Chair Philip C. Malte John C. Kramlich Program Authorized to Offer Degree: Department of Mechanical Engineering Table of Contents List of Figures .................................................................................................................................................iii List of Tables ................................................................................................................................................... vi Chapter 1 Introduction ................................................................................................................................ 2 1.1 Motivation ............................................................................................................................................. 2 1.2 Objectives .............................................................................................................................................. 3 Chapter 2 Literature Review & Fundamental Concepts ................................................................. 5 2.1 Biomass .................................................................................................................................................. 5 2.2 Biomass Combustion ......................................................................................................................... 8 2.2.1 Heating & Drying ........................................................................................................................ 9 2.2.2 Solid Particle Pyrolysis ............................................................................................................. 9 2.2.3 Gas Phase Pyrolysis & Volatile Combustion ................................................................. 13 2.2.4 Char oxidation .......................................................................................................................... 13 2.3 Chemical Kinetics ............................................................................................................................ 14 2.4 Chemical Reactor Network Models .......................................................................................... 17 2.5 Pollutant Formation ....................................................................................................................... 19 2.5.1 Carbon Monoxide .................................................................................................................... 19 2.5.2 Particulate Matter ................................................................................................................... 20 Chapter 3 Experimental Data Collection & Results ....................................................................... 25 3.1 Furnace Description ....................................................................................................................... 25 3.2 Experimental Setup ........................................................................................................................ 27 3.3 Experimental Results ..................................................................................................................... 28 3.3.1 Dec. 12th 2013 Burn ................................................................................................................ 28 i 3.3.2 Air Staging Effects ................................................................................................................... 32 3.4 Conclusions ........................................................................................................................................ 34 Chapter 4 Chemical Reactor Network Development .................................................................... 35 4.1 Chemical Composition of Wood & Kinetics ........................................................................... 35 4.2 CRN Configuration .......................................................................................................................... 37 4.2.1 PFT1 ............................................................................................................................................. 38 4.2.2 PSR2.............................................................................................................................................. 40 4.2.3 PSR3.............................................................................................................................................. 40 4.2.4 PFR4 ............................................................................................................................................. 40 4.3 Conclusions ........................................................................................................................................ 41 Chapter 5 CRN Model Validation .......................................................................................................... 42 5.1 Dec. 12th 2013 Burn ........................................................................................................................ 42 5.2 Effects of Air Staging on CO Concentration ........................................................................... 46 5.3 Conclusions ........................................................................................................................................ 49 Chapter 6 Conclusions............................................................................................................................... 50 Chapter 7 Future Work ............................................................................................................................. 52 7.1 CRN Based on CFD Simulations ................................................................................................. 52 7.2 Chemical Species and Reaction Rates ...................................................................................... 54 7.3 Model Temperature Input ............................................................................................................ 56 Low-Cost Sensors, Heat Transfer Model & CRN Info. ........................................... 57 Bibliography ................................................................................................................................................ 111 ii List of Figures Figure 1.1: Overview of factors influencing biomass combustion [3]. ............................................. 3 Figure 2.1: Left: Lignocellulose – a matrix of cellulose and hemicellulose held together by lignin [5]. .................................................................................................................................................................. 6 Figure 2.2: Lignin fragment [7]. ....................................................................................................................... 6 Figure 2.3: Sequential stages of wood combustion Figure from [10]. .............................................. 8 Figure 2.4: TGA and DTG results of four wood samples. Figure taken from Van Loo [3]. ..... 11 Figure 2.5: TGA and DTG analysis of white oak [12]. ........................................................................... 12 Figure 2.6: Major stages in combustion of a solid biomass particle [3]. ....................................... 14 Figure 2.7: Left: PSR is a steady-state, steady-flow, perfectly mixed reactor. Right: PFR is a steady-state, steady-flow reactor and has no axial mixing. ............................................................... 17 Figure 2.8: Gas turbine combustor modeled with a CRN consisting of two PSR elements and a PFR [14]. WSR stands for well stirred reactor and is practically equivalent to a PSR for the purpose of this figure. ...................................................................................................................................... 18 Figure 2.9: CO emissions from a) a simple, manually charged wood boiler b) a down-draught wood log boiler c) an automatic furnace with combustion technology as of 1990; d) an automatic furnace with enhanced combustion technology as of 1995 [20]. .............................. 20 Figure 2.10: Graphical overview of soot formation from fuel species [7]. .................................. 21 Figure 2.11: Evolution of CO and PAH with combustion temperature [3]. ................................. 22 Figure 2.12: Particle size distribution of PM from residential wood furnaces on a mass basis [24] . ........................................................................................................................................................................ 24 Figure 2.13: Number concentration of particles from residential wood furnaces [24]. ........ 24 Figure 3.1: Experimental biomass furnace .............................................................................................. 25 Figure 3.2: White Oak burning in the biomass furnace. ...................................................................... 26 Figure 3.3: Experimental furnace and data acquisition system. ...................................................... 28 Figure 3.4: White oak fuel used in one of the experiments. .............................................................. 29 Figure 3.5: Fuel weight and temperatures in

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    121 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us