Lectures on the Mathematics of Quantum Mechanics Volume II: Selected Topics

Lectures on the Mathematics of Quantum Mechanics Volume II: Selected Topics

Gianfausto Dell'Antonio Lectures on the Mathematics of Quantum Mechanics Volume II: Selected Topics February 17, 2016 Mathematical Department, Universita' Sapienza (Rome) Mathematics Area, ISAS (Trieste) 2 A Caterina, Fiammetta, Simonetta Il ne faut pas toujours tellement epuiser un sujet q'on ne laisse rien a fair au lecteur. Il ne s'agit pas de fair lire, mais de faire penser Charles de Secondat, Baron de Montesquieu Contents 1 Lecture 1. Wigner functions. Coherent states. Gabor transform. Semiclassical correlation functions ........................ 11 1.1 Coherent states . 15 1.2 Husimi distribution . 17 1.3 Semiclassical limit using Wigner functions . 21 1.4 Gabor transform . 24 1.5 Semiclassical limit of joint distribution function . 25 1.6 Semiclassical limit using coherent states . 26 1.7 Convergence of quantum solutions to classical solutions . 29 1.8 References for Lecture 1 . 34 2 Lecture 2 Pseudifferential operators . Berezin, Kohn-Nirenberg, Born-Jordan quantizations ................................. 35 2.1 Weyl symbols . 36 2.2 Pseudodifferential operators . 36 2.3 Calderon - Vaillantcourt theorem . 39 2.4 Classes of Pseudodifferential operators. Regularity properties. 44 2.5 Product of Operator versus products of symbols . 46 2.6 Correspondence between commutators and Poisson brackets; time evolution . 49 2.7 Berezin quantization . 51 2.8 Toeplitz operators . 53 2.9 Kohn-Nirenberg Quantization . 54 2.10 Shubin Quantization . 55 2.11 Born-Jordarn quantization . 56 2.12 References for Lecture 2 . 57 4 Contents 3 Lecture 3 Compact and Schatten class operators. Compactness criteria. Bouquet of Inequalities ........................... 59 3.1 Schatten Classes . 64 3.2 General traces . 65 3.3 General Lp spaces . 66 3.4 Carleman operators . 69 3.5 Criteria for compactness . 70 3.6 Appendix to Lecture 3: Inequalities . 76 3.6.1 Lebesgue decomposition theorem . 77 3.6.2 Further inequalities . 78 3.6.3 Interpolation inequalities . 81 3.6.4 Young inequalities . 85 3.6.5 Sobolev-type inequalities . 87 3.7 References for Lecture 3 . 90 4 Lecture 4 Periodic potentials. Wigner-Seitz cell and Brillouen zone. Bloch and Wannier functions .............................. 91 4.1 Fermi surface, Fermi energy . 92 4.2 Periodic potentials. Wigner-Satz cell. Brillouin zone. The Theory of Bloch-Floquet-Zak . 95 4.3 Decompositions . 96 4.4 One particle in a periodic potential . 99 4.5 the Mathieu equation . 103 4.6 The case d ≥ 2. Fibration in momentum space . 104 4.7 Direct integral decomposition . 107 4.8 Wannier functions . 111 4.9 Chern class . 114 4.10 References for Chapter 4 . 117 5 Lecture 5 Connection with the properties of a crystal. Born- Oppenheimer approximation. Edge states and role of topology ...................................................119 5.1 Crystal in a magnetic field . 121 5.2 Slowly varying electric field . 122 5.3 Heisenberg representation . 126 5.4 Pseudifferential point of view . 126 5.5 Topology induced by a magnetic field . 129 5.6 Algebraic-geometric formulation . 131 5.7 Determination of a topological index . 132 5.8 Gauge transformation, relative index and Quantum pumps . 136 5.9 References for Lecture 5 . 138 Contents 5 6 Lecture 6 Lie-Trotter Formula, Wiener Process, Feynmann-Kac formula ....................................................141 6.1 The Feynmann-Kac formula . 146 6.2 Stationary Action; the Fujiwara's approach . 147 6.3 Generalizations of Fresnel integral . 149 6.4 Relation with stochastic processes . 149 6.5 Random variables. Independence . 151 6.6 Stochastic processes, Markov processes . 152 6.7 Construction of Markov processes . 153 6.8 Measurability . 155 6.9 Wiener measure . 158 6.10 The Feynman-Kac formula I: bounded continuous potentials . 159 6.11 The Feynman-Kac formula II: more general potentials . 160 6.12 References for Lecture 6 . 162 7 Lecture 7 Elements of probabiity theory. Construction of Brownian motion. Diffusions .........................................163 7.1 Inequalities . 164 7.2 Independent random variables. 166 7.3 Criteria of convergence . 167 7.4 Laws of large numbers; Kolmogorov theorems . 169 7.5 Central limit theorem . 170 7.6 Construction of probability spaces . 172 7.7 Construction of Brownian motion (Wiener measure) . 174 7.8 Brownian motion as limit of random walks. 175 7.9 Relative compactness . 177 7.10 Modification of Wiener paths. Martingales. 178 7.11 Ito integral . 181 7.12 References for Lecture 7 . 184 8 Lecture 8 Ornstein-Uhlenbeck process. Markov structure . Semigroup property. Paths over function spaces . 185 8.1 Mehler kernel . 185 8.2 Ornstein-Uhlenbeck measure . 187 8.3 Markov processes on function spaces . 189 8.4 Processes with (continuous) paths on space of distributions. The free-field process . 192 8.5 Osterwalder path spaces . 194 8.6 Strong Markov property . 196 8.7 Positive semigroup structure . 197 8.8 Markov Fields . Euclidian invariance. Local Markov property . 201 8.9 Quantum Field . 202 6 Contents 8.10 Euclidian Free Field . 205 8.11 Connection with a local field in Minkowski space . 206 8.12 Modifications of the O.U. process. Modification of euclidian fields . 207 8.13 Refences for Lecture 8 . 209 9 Lecture 9 Modular Operator. Tomita-Takesaki theory Non- commutative integration ...................................211 9.1 The trace. Regular measure (gage) spaces . 212 9.2 Brief review of the K-M-S. condition . 214 9.3 The Tomita-Takesaki theory . 216 9.4 Modular structure, Modular operator, Modular group . 220 9.5 Intertwining properties . 223 9.6 Modular condition. Non-commutative Radon-Nikodym derivative . 227 9.7 Positive cones . 233 9.8 References for Lecture 9 . 234 10 Lecture 10 Scattering theory. Time-dependent formalism. Wave Operators .................................................235 10.1 Scattering Theory . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    386 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us