The Structure of Differential Invariant Algebras of Lie Groups and Lie

The Structure of Differential Invariant Algebras of Lie Groups and Lie

The Structure of Di®erential Invariant Algebras of Lie Groups and Lie Pseudo{Groups Peter J. Olver University of Minnesota http://www.math.umn.edu/ » olver =) Juha Pohjanpelto Jeongoo Cheh à 0 Sur la th¶eorie, si importante sans doute, mais pour nous si obscure, des ¿groupes de Lie in¯nis, nous ne savons rien que ce qui trouve dans les m¶emoires de Cartan, premiere exploration a travers une jungle presque imp¶en¶etrable; mais celle-ci menace de se refermer sur les sentiers d¶eja trac¶es, si l'on ne procede bient^ot a un indispensable travail de d¶efrichement. | Andr¶e Weil, 1947 à 1 Pseudo-groups in Action ² Lie | Medolaghi | Vessiot ² Cartan : : : Guillemin, Sternberg ² Kuranishi, Spencer, Goldschmidt, Kumpera, : : : ² Relativity ² Noether's Second Theorem ² Gauge theory and ¯eld theories Maxwell, Yang{Mills, conformal, string, : : : ² Fluid Mechanics, Metereology Euler, Navier{Stokes, boundary layer, quasi-geostropic , : : : ² Linear and linearizable PDEs ² Solitons (in 2 + 1 dimensions) K{P, Davey-Stewartson, : : : ² Image processing ² Numerical methods | geometric integration ² Kac{Moody symmetry algebras ² Lie groups! à 2 What's New? Direct constructive algorithms for: ² Invariant Maurer{Cartan forms ² Structure equations ² Moving frames ² Di®erential invariants ² Invariant di®erential operators ² Constructive Basis Theorem ² Syzygies and recurrence formulae ² GrÄobner basis constructions ² Further applications =) Symmetry groups of di®erential equations =) Vessiot group splitting =) Gauge theories =) Calculus of variations à 3 Di®erential Invariants G | transformation group acting on p-dimensional submani- folds N = fu = f(x)g ½ M G(n) | prolonged action on the submanifold jet space Jn = Jn(M; p) Di®erential invariant I : Jn ! R I(g(n) ¢ (x; u(n))) = I(x; u(n)) =) curvature, torsion, : : : Invariant di®erential operators: D1; : : : ; Dp =) arc length derivative ? ? I(G) | the algebra of di®erential invariants ? ? à 4 The Basis Theorem Theorem. The di®erential invariant algebra I(G) is gener- ated by a ¯nite number of di®erential invariants I1; : : : ; I`, meaning that every di®erential invariant can be locally expressed as a function of the generating invariants and their invariant derivatives: DJ I· = Dj1Dj2 ¢ ¢ ¢ DjnI·: =) Tresse, Kumpera } } functional independence } } ? ? Constructive Version ? ? =) Computational algebra & GrÄobner bases à 5 The Algebra of Di®erential Invariants Key Issues: ² Minimal basis of generating invariants: I1; : : : ; I` ² Commutation formulae for the invariant di®erential operators: p i [ Dj; Dk ] = Aj;k Di iX=1 =) Non-commutative di®erential algebra ² Syzygies (functional relations) among the di®erentiated invariants: ©( : : : DJ I· : : : ) ´ 0 =) Gauss{Codazzi relations Applications: ² Equivalence and signatures of submanifolds and characteri- zation of moduli spaces ² Computation of invariant variational problems: L( : : : DJ I· : : : ) d! Z ² Group splitting of PDEs à 6 Basic Themes ² The structure of a (connected) pseudo-group is ¯xed by its Lie algebra of in¯nitesimal generators: g ² The in¯nitesimal generators satisfy an overdetermined system of linear partial di®erential equations | the determining equations: F = 0 ² The basic structure of an overdetermined system of PDEs is ¯xed by the algebraic structure of its symbol module: I ² The structure of the di®erential invariant algebra I(G) is ¯xed by the prolonged in¯nitesimal generators: g(1) ² These satisfy an overdetermined system of partial di®er- ential equations | the prolonged determining equa- tions: H = 0 ² The basic structure of the prolonged determining equa- tions is ¯xed by the algebraic structure of its prolonged symbol module: J à 7 Jets and Prolongation Jet = Taylor polynomial/series (Ehresmann) th jnv | n order jet of a vector ¯eld Jn = Jn(M; p) | jets of p-dimensional submanifolds N ½ M v(n) | prolonged vector ¯eld on Jn The prolongation map takes (jets of) vector ¯elds on M to vector ¯elds on the jet space Jn. (1) p : j1v 7¡! v There is an induced dual prolongation map p¤ : J ¡! I on the symbol modules, which is algebraic (at su±ciently high order). With this \algebraic prolongation" in hand, the structure of the prolonged symbol module, and hence the di®erential invariants, is algorithmically determined by the structure of the pseudo-group's symbol module. à 8 Pseudo-groups De¯nition. A pseudo-group is a collection of local di®eomorphisms ' : M ! M such that ² Identity: 1M 2 G, ² Inverses: '¡1 2 G, ² Restriction: U ½ dom ' =) ' j U 2 G, ² Composition: im ' ½ dom à =) à ± ' 2 G. De¯nition. A Lie pseudo-group G is a pseudo-group whose transformations are the solutions to an involutive system of partial di®erential equations: F (z; '(n)) = 0: ² Nonlinear determining equations =) analytic (Cartan{KÄahler) ? ? Key complication: 6 9 Abstract object G ? ? à 9 A Non-Lie Pseudo-group Acting on M = R2: X = '(x); Y = '(y) where ' 2 D(R). Ä Cannot be characterized by a system of partial di®erential equations ¢(x; y; X(n); Y (n)) = 0 Theorem. (Johnson, Itskov) Any non-Lie pseudo-group can be completed to a Lie pseudo-group with the same di®erential invariants. Completion of previous example: X = '(x); Y = Ã(y) where '; à 2 D(R). à 10 In¯nitesimal Generators g | Lie algebra of in¯nitesimal generators of the pseudo-group G z = (x; u) | local coordinates on M Vector ¯eld: m @ p @ q @ v = ³a(z) = »i + '® @za @xi @u® aX=1 iX=1 ®X=1 Vector ¯eld jet: (n) b jnv 7¡! ³ = ( : : : ³A : : : ) #A b k b b @ ³ @ ³ ³A = = @zA @za1 ¢ ¢ ¢ @zak In¯nitesimal (Linearized) Determining Equations L(z; ³(n)) = 0 (¤) Remark: If G is the symmetry group of a system of di®erential equations ¢(x; u(n)) = 0, then (¤) is the (involutive completion of) the usual Lie determining equations for the symmetry group. à 11 Symmetry Groups | Review System of di®erential equations: (n) ¢º(x; u ) = 0; º = 1; 2; : : : ; k Prolonged vector ¯eld: p @ q n @ v(n) = »i + ' ® @xi J @u® iX=1 ®X=1 #XJ=0 J where b p p ® ® ® i ® i ' J = DJ ' ¡ ui » + uJ;i » à ! iX=1 iX=1 b ® (n) (n) (n) ´ ©J (x; u ; » ; ' ) In¯nitesimal invariance: (n) v (¢º) = 0 whenever ¢ = 0: In¯nitesimal determining equations: L(x; u; »(n); '(n)) = 0 i ® i ® L( : : : ; x ; : : : ; u ; : : : ; »A; : : : ; 'A; : : : ) = 0 =) involutive completion à 12 The Korteweg{deVries equation ut + uxxx + uux = 0 Symmetry generator: @ @ @ v = ¿(t; x; u) + »(t; x; u) + '(t; x; u) @t @x @u Prolongation: @ @ @ v(3) = v + 't + 'x + ¢ ¢ ¢ + 'xxx @ut @ux @uxxx where t 2 ' = 't + ut'u ¡ ut¿t ¡ ut ¿u ¡ ux»t ¡ utux»u x 2 ' = 'x + ux'u ¡ ut¿x ¡ utux¿u ¡ ux»x ¡ ux»u xxx ' = 'xxx + 3ux'u + ¢ ¢ ¢ In¯nitesimal invariance: (3) t xxx x v (ut + uxxx + uux) = ' + ' + u ' + ux ' = 0 on solutions à 13 ut + uxxx + uux = 0 In¯nitesimal determining equations: ¿x = ¿u = »u = 't = 'x = 0 2 2 ' = »t ¡ 3 u¿t 'u = ¡ 3 ¿t = ¡ 2 »x ¿tt = ¿tx = ¿xx = ¢ ¢ ¢ = 'uu = 0 General solution: ¿ = c1 + 3c4t; » = c2 + c3t + c4x; ' = c3 ¡ 2c4u: Basis for symmetry algebra: @t; @x; t @x + @u; 3t @t + x @x ¡ 2u @u: The symmetry group GKdV is four-dimensional (x; t; u) 7¡! (¸3t + a; ¸x + ct + b; ¸¡2u + c) à 14 Moving Frames For a ¯nite-dimensional Lie group action, a moving frame is de¯ned to be a (right) equivariant map ½(n) : Jn ¡! G where ½(n)(g(n) ¢ z(n)) = ½(n)(z(n)) ¢ g¡1 Moving frames are explicitly constructed by choosing a cross-section to the group orbits, and solving the normaliza- tion equations for the group parameters. The existence of a moving frame requires that the group action be free, i.e., that there is no isotropy, or (locally) that the group orbits have the same dimension as the group itself. à 15 Moving Frames for Pseudo{Groups ² The role of the group parameters is played by the pseudo- group jet coordinates, while the group is replaced by a certain principal bundle H(n) ' Jn £ G(n) ¡! Jn. ² There are an in¯nite number of pseudo-group parameters to normalize, which are to be done order by order. (Or else use the Taylor series approach.) However, at each ¯nite order, the algebraic manipulations in the moving frame normalization procedure are identical to the ¯nite- dimensional calculus. ² Since the pseudo-group G is in¯nite-dimensional, classical freeness is impossible! Rather, a pseudo-group action is said to act freely at a jet z(n) 2 Jn if the only pseudo- group elements which ¯x z(n) are those whose n-jet coincides with the identity n-jet. Theorem. If G acts freely on Jn for n ¸ 1, then it acts freely on all Jk for k ¸ n. n? | order of freeness. à 16 Normalization Ä To construct a moving frame : I. Choose a cross-section to the pseudo-group orbits: ®· (n) uJ· = c·; · = 1; : : : ; rn = ¯ber dim G II. Solve the normalization equations ®· (n) (n) FJ· (x; u ; g ) = c· for the pseudo-group parameters g(n) = ½(n)(x; u(n)) III. Invariantization maps di®erential functions to di®erential invariants: ¶ : F (x; u(n)) 7¡! I(x; u(n)) = F ( ½(n)(x; u(n)) ¢ (x; u(n)) ) =) an algebra morphism and a projection: ¶ ± ¶ = ¶ I(x; u(n)) = ¶( I(x; u(n)) ) à 17 Invariantization A moving frame induces an invariantization process, denoted ¶, that projects functions to invariants, di®erential operators to invariant di®erential operators; di®erential forms to invari- ant di®erential forms, etc. Geometrically, the invariantization of an object is the unique invariant version that has the same cross-section values. Algebraically, invariantization amounts to replacing the group parameters in the transformed object by their moving frame formulas. à 18 Invariantization In particular, invariantization of the jet coordinates leads to a complete system of functionally independent

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us