Exploratory Multivariate Analysis for Empirical Information Affected by Uncertainty and Modeled in a Fuzzy Manner: a Review

Exploratory Multivariate Analysis for Empirical Information Affected by Uncertainty and Modeled in a Fuzzy Manner: a Review

Granul. Comput. DOI 10.1007/s41066-017-0040-y ORIGINAL PAPER Exploratory multivariate analysis for empirical information affected by uncertainty and modeled in a fuzzy manner: a review Pierpaolo D’Urso1 Received: 18 September 2016 / Accepted: 25 January 2017 © Springer International Publishing Switzerland 2017 Abstract In the last few decades, there has been an Keywords Statistical reasoning · Information · increase in the interest of the scientific community for mul- Uncertainty and imprecision · Granularity · Information tivariate statistical techniques of data analysis in which the granules · Exploratory multivariate statistical analysis · data are affected by uncertainty, imprecision, or vague- Fuzzy data · Metrics for fuzzy data · Cluster analysis · ness. In this context, following a fuzzy formalization, sev- Regression analysis · Self-organizing maps · Principal eral contributions and developments have been offered in component analysis · Multidimensional scaling · various fields of the multivariate analysis. In this paper—to Correspondence analysis · Clusterwise regression analysis · show the advantages of the fuzzy approach in providing a Classification and regression trees · Three-way analysis deeper and more comprehensive insight into the manage- ment of uncertainty in this branch of Statistics—we present an overview of the developments in the exploratory multi- 1 Introduction variate analysis of imprecise data. In particular, we give an outline of these contributions within an overall framework In Statistical Reasoning, the basic ingredients of a statis- of the general fuzzy approach to multivariate statistical tical analysis are data and models. Both share an infor- analysis and review the principal exploratory multivariate mational nature, which can be clearly sized in the knowl- methods for imprecise data proposed in the literature, i.e., edge discovery process leading to the acquisition of an cluster analysis, self-organizing maps, regression analysis, informational gain. These informational objects are often principal component analysis, multidimensional scaling, uncertain, imprecise, or vaguely defined. Fuzzy sets theory and other exploratory statistical approaches. Finally, we (Zadeh 1965) may take into account this uncertainty and point out certain potentially fruitful lines of research that imprecision, providing us with a means for dealing with could enrich the future developments in this interesting and fuzzy informational objects in statistical analysis. Early promising research area of Statistical Reasoning. All in all, contributions deal mainly with cluster analysis and regres- the main purpose of this paper is to involve the Granular sion. New developments have been taking place in the last Computing scientific community and to stimulate and focus decades, in the context of a more systematic approach to its interest on these statistical fields. fuzzy statistical methods (Coppi 2003). New techniques of analysis have been proposed in the literature, extending the domain of fuzzy exploratory multivariate analysis to cluster analysis, regression analysis, principal component analysis, multidimensional scaling, self-organizing maps, cluster- wise regression analysis, three-way analysis, and recently regression trees. * Pierpaolo D’Urso The aim of this paper is to give an outline of these devel- [email protected] opments within an organic framework acting as the basis 1 Department of Social Sciences and Economics, Sapienza- for the general fuzzy approach to multivariate statistical University of Rome, Rome, Italy analysis. In this connection—focusing our attention on the Vol.:(0123456789)1 3 Granul. Comput. exploratory multivariate analysis of imprecise empirical precision and significance (or relevance) become almost information and considering a fuzzy approach to manage mutually exclusive characteristics” (Zadeh 1973). This the uncertainty affecting the information (data and mod- principle justifies the development and application of logics els)—we present a review of the exploratory multivariate allowing the utilization of imprecise information, for draw- methods proposed in the literature, i.e., cluster analysis, ing relevant conclusions when faced with complex contexts self-organizing maps, regression analysis, principal compo- (Coppi 2003). nent analysis, multidimensional scaling, and other explora- In Statistical Reasoning, the statistical method repre- tory multivariate methods. sents a special category of knowledge acquisition, since it Overall, the main purpose of this paper is to involve the defines a class of procedures referring to a specific type of Granular Computing scientific community and to stimulate information elements and to the associated processing tech- and focus its interest in these statistical fields. niques. This class is characterized by two essential enti- The paper is structured as follows: In Sect. 2, we ana- ties: the empirical data and the models for data analysis, lyze the informational paradigm and the uncertainty con- which in turn include both the theoretical assumptions and nected to information. In Sect. 3, we focus our attention on the algorithms for applying them to the data. The empirical empirical information affected by uncertainty formalized data are special information elements, in which the attrib- in a fuzzy manner, i.e., fuzzy data. In Sect. 4, we present ute is represented by a statistical variable and the object an organic review of exploratory multivariate methods for by a statistical unit. The model for the data analysis can fuzzy data, i.e., cluster analysis (Sect. 4.1), self-organizing be considered as an information ingredient of a theoretical maps (Sect. 4.2), regression analysis (Sect. 4.3), principal type, referring to abstract entities, such as variables, param- component analysis (Sect. 4.4), multidimensional scaling eters, potential data, functional forms, and so on (Coppi (Sect. 4.5), and other exploratory multivariate methods for 2003). fuzzy data (Sect. 4.6). In conclusion, in Sect. 5, we point Thus, a statistical analysis can be described as a process out some potentially fruitful lines of research that could of knowledge acquisition which, starting from an empirical lead to future developments in this interesting and promis- and theoretical initial information, applies computational ing research area of Statistical Reasoning. procedures (algorithms), thus acquiring additional infor- mation (information gain) having a cognitive and/or opera- tional character (Coppi 2002). 2 Information and uncertainty Let us denote by (IE, IT) the pair empirical information IE (data) and theoretical information IT (real world theo- A corpus of knowledge is a set of information elements. ries, mathematical formalizations, general and statistical Each information element is represented by the following assumptions, and so on). Both IE and IT, to the extent to quadruple: (attribute, object, value, confidence), where which they are informational entities (corpus of knowl- attribute is the function which maps an object into a value, edge), are constituted by information elements which can in the framework of a reference universe of elements; value be imprecise and uncertain. Generally, in real world appli- is the predicate of the object, associated to a subset of refer- cations, the pair (IE, IT) represents imperfect information. ence universe; confidence is the indication of the reliability A way to account for the imperfection of the information of the information element (Coppi 2003). utilized in statistical analysis is to manage it using the In the real world, an element of information is generally fuzzy sets theory introduced by Zadeh (1965). This implies affected by imprecision (with respect to value) and uncer- assuming that the pair (IE, IT) has a fuzzy nature, i.e., we tainty (expressed through the notion of confidence). Both can have the following cases: IE is fuzzy, IT is fuzzy, both IE imprecision and uncertainty can be measured. When the and IT are fuzzy (see, e.g., Coppi et al. 2006b; Coppi 2008). measure of imprecision and/or uncertainty is different from In this paper, we will follow an exploratory approach, zero, we have imperfect information (Coppi 2003). focusing our attention multivariate analysis in which the- In the reasoning process applied to a corpus of knowl- oretical methods (IT) and empirical data (IE) are, respec- edge, a system of rules is adopted. This allows us to reach tively, crisp/fuzzy and fuzzy. conclusions which, when the initial information is imper- fect, are themselves characterized by imprecision and uncertainty. When the phenomena and the situations under 3 Empirical information and uncertainty: investigation are complex, the following Incompatibility imprecise data Principle (Zadeh 1973) should be taken into account: “As the complexity of a system increases, our ability to make In Statistical Reasoning, the uncertainty affecting empirical precise and yet significant statements about its behav- information (IE) may stem from various sources (Coppi and ior diminishes until a threshold is reached beyond which D’Urso 2012): 1 3 Granul. Comput. – x̃ =(c , c , l , r ) i = 1,...,n; j = 1,...,p – imprecision in measuring the empirical phenomenon number ij 1ij 2 ij ij ij LR, con- represented by statistical variables; sists of an interval which runs from c1ij − lij to c2ij + rij and –– vagueness of statistical variables when these are the membership functions give differential weights to the expressed in linguistic

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us