Laser Ablationablation

Laser Ablationablation

LaserLaser AblationAblation FundamentalsFundamentals && ApplicationsApplications Samuel S. Mao Department of Mechanical Engineering Advanced Energy Technology Department University of California at Berkeley Lawrence Berkeley National Laboratory March 10, 2005 University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation What is “Laser Ablation”? Mass removal by coupling laser energy to a target material University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition substrate * oxide/superconductor films material * nanocrystals/nanotubes plume target mass spectrometer ) Materials characterization * semiconductor doping profiling plasma lens * solid state chemical analysis target optical spectrometer ) Micro structuring * direct wave guide writing * 3D micro fabrication microstructure target transparent solid University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition * oxide/superconductor films * nanocrystals/nanotubes ) Materials characterization * semiconductor doping profiling * solid state chemical analysis 100 µm ) Micro structuring * direct wave guide writing * 3D micro fabrication University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er DoDo wewe reallyreally understand?understand? las laser beam “Laser ablation … is still largely unexplored at the plasma fundamental level.” J. C. Miller & R. F. Haglund, Laser Ablation and Desorption (Academic, New York, 1998) target University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation ) What is happening? laser pulse target femtosecond picosecond nanosecond microsecond 10-15 s10-12 s10-9 s10-6 s University of California at Berkeley Q Lawrence Berkeley National Laboratory ExperimentsExperiments - ultrafast imaging ) Pump-probe technique ablation laser beam pump beam probe beam delay time CCD ?? imaging laser beam target University of California at Berkeley Q Lawrence Berkeley National Laboratory 1 fs = 10 –15 s FemtosecondFemtosecond TimeTime ScaleScale ) Ultrafast imaging - time dependent energy transfer laser pulse air glass m µ 100 100 fs,800 nm E = 30 µJ C electronic excitation V self-focusing e-h plasma University of California at Berkeley Q Lawrence Berkeley National Laboratory FemtosecondFemtosecond TimeTime ScaleScale ) Electron number density ne – time/space dependence 5 19 -3 ne ~ 10 cm 0 fs • Transmittance (probe beam) ) 0 -3 5 333 fs Id −αd cm 19 0 = e laser pulse 5 I0 667 fs 0 • Absorption coefficient 5 0 2 1000 fs τ ω p 0 α = 5 nc 1+ω 2τ 2 1333 fs 0 5 • Plasma frequency z 1667 fs 0 5 n e2 2000 fs e electron number density (10 ω p = 0 meε 0 0 100 200 300 400 500 z (µ m) University of California at Berkeley Q Lawrence Berkeley National Laboratory FemtosecondFemtosecond TimeTime ScaleScale ) Peak electron number density ne - time dependence 19 5 6x10 0 fs ) 0 -3 5 19 333 fs 5x10 cm 19 0 5 667 fs ) -3 19 0 4x10 5 m 1000 fs (c 0 x 5 a 19 m 1333 fs e, 3x10 0 N 5 no breakdown 1667 fs 19 0 2x10 5 2000 fs electron number density (10 0 19 0 100 200 300 400 500 1x10 z (µ m) 0 500 1000 1500 2000 2500 time (fs) flattened peak electron number density University of California at Berkeley Q Lawrence Berkeley National Laboratory FemtosecondFemtosecond TimeTime ScaleScale ) Fundamental processes 9 Nonlinear optics Self-focusing - intensity dependence of refractive index laser pulse positive refractive index change 0 9 Nonlinear absorption Electronic excitation - interband absorption z C negative refractive index change suppress self-focusing V University of California at Berkeley Q Lawrence Berkeley National Laboratory FemtosecondFemtosecond TimeTime ScaleScale ) Propagation of electronic excitation in glass 500 450 250 µJ 120 µJ 400 60 µJ 350 30 µJ 300 12 µJ m) 250 µ z ( 200 v = 1.8x108 m/s 150 n = 1.65 100 50 0 -50 -500 0 500 1000 1500 2000 2500 100 fs,800 nm t (fs) E = 30 µJ [Appl. Phys. A 79, 1695–1709 (2004)] University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation ) What is happening? laser pulse target femtosecond picosecond nanosecond microsecond University of California at Berkeley Q Lawrence Berkeley National Laboratory 1ps= 10 –12 s PicosecondPicosecond TimeTime ScaleScale ) Picosecond imaging ablation laser t = 50 ps t = 50 ps pulse 50 µm (air) 50 µm target Cu (laser pulse: 35 ps, fluence: 60 J/cm2) (laser pulse: 35 ps, fluence: 90 J/cm2) University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Threshold behavior regime-1 plasma onset regime-2 25 1 2 20 m) µ h ( 15 50 µm t dep 10 tion la b a 5 40 J/cm2 85 J/cm2 110 J/cm2 0 0 100 200 300 400 500 (laser pulse length 35 ps; pictures taken at 20 ps) laser fluence (J/cm2) 9 Threshold for picosecond plasma formation – same as the threshold for ablation efficiency reduction: ~ 85 J/cm2 (laser fluence) ~ 1012 W/cm2 (power density) (threshold for direct laser-induced air breakdown: ~ 1013 W/cm2) University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Ultrafast interferometry t = 15 ps interference pattern z 50 µm target r University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Electron number density t = 15 ps 1.2x1020 z 1.0x1020 ) 19 -3 8.0x10 9 A large electron 19 (cm e 6.0x10 number density! N (close to target surface) 4.0x1019 air density 2.0x1019 0.0 0 50 100 150 200 250 Z (µm) University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Longitudinal (z) expansion longitudinal plasma extent vs. time 500 400 300 m) µ z m z ( µ 200 50 100 0 0 20406080100120 t (ps) (laser energy: 10 mJ) 9 longitudinal expansion is suppressed (t > 50 ps)! University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Lateral (r) expansion (t > 50 ps: expansion only in lateral direction) lateral plasma radius vs. time 50 40 30 m) µ r ( 20 10 r 0 0 500 1000 1500 2000 2500 t (ps) (laser energy: 10 mJ) 9 lateral expansion follows a power law! University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Energy deposition to picosecond plasma 100 t1/2 power law similarity relation (2D blast wave - line energy source) 1/2 1/ 4 t m) 10 µ E 1/ 2 r ( r ∝ t ρ 10.0 mJ o 7.5 mJ E: energy deposition density (laser axis) 1 10 100 1000 ρ0: ambient gas (air) density time (ps) 25 2 2 2 40 J/cm 85 J/cm 110 J/cm 20 m) µ Distribution of laser energyh ( 15 (100%): pt reduced efficiency 50 µm 10 on de ~ 50% absorbed by the picosecondi micro-plasma lat 5 b a ~ 50% reaching target0 surface 0 100 200 300 400 500 plasma onset laser fluence (J/cm2) University of California at Berkeley Q Lawrence Berkeley National Laboratory PicosecondPicosecond TimeTime ScaleScale ) Theoretical model (laser-solid-gas interaction) electron ion (gas) laser beam atom (gas) gas (1atm) photon Cu atom Cu electron beforeafter laser laser irradiation irradiation 9 laser heating of target (metal) • electron heating - absorption of laser energy • lattice heating - electron-phonon collisions 9 plasma development above target • surface electron emission (seed) • impact ionization of gas University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation ) What is happening? laser pulse target femtosecond picosecond nanosecond microsecond University of California at Berkeley Q Lawrence Berkeley National Laboratory 1 ns = 10 –9 s NanosecondNanosecond TimeTime ScaleScale ) Plasma evolution – picosecond to nanosecond z time dependence (35 ps, 7 mJ) z laser energy dependence (35 ps, 2 ns) University of California at Berkeley Q Lawrence Berkeley National Laboratory NanosecondNanosecond TimeTime ScaleScale ) Plasma development plasma advancement: ~ 106 cm/s ~ 10 µm every 1 ns (1000 ps) laser pulse shock wave plasma vapor target solid University of California at Berkeley Q Lawrence Berkeley National Laboratory NanosecondNanosecond TimeTime ScaleScale ) Plasma shielding – nanosecond laser Theory Experiment without plasma 10 2 20 GW/cm m) µ 1 h ( 30 GW/cm2 0.1 ablation dept 100 GW/cm2 0123456789101112 10 100 solid t (ns) laser fluence (J/cm2) 3 ns, 1064 nm laser ablation of Si 25 ns, 248 nm laser ablation of Cu (single pulse) (single pulse, in air, 100 µm spot diameter) University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation ) What is happening? laser pulse target femtosecond picosecond nanosecond microsecond University of California at Berkeley Q Lawrence Berkeley National Laboratory 1 µs = 10 –6 s MicrosecondMicrosecond TimeTime ScaleScale ) Plume evolution z below threshold 10 ns 64 ns 160 ns 760 ns 1.6 µs4.9 µs 100 µm (3 ns, 1.8x1010 W/cm2) z above threshold 5 ns 70 ns 200 ns 860 ns 1.3 µs 4.2 µs 100 µm (3 ns, 2.1x1010 W/cm2) University of California at Berkeley Q Lawrence Berkeley National Laboratory MicrosecondMicrosecond TimeTime ScaleScale ) Threshold behavior 25 18 GW/cm2 21 GW/cm2 +2.0 +2.0 m) m) 20 m) µ (µ (µ 0.0 0.0 -2.0 15 -2.0 -4.0 10 -4.0 ablation depth ablation depth -6.0 -6.0 4.9 µs ablation depth ( 5 4.2 µs 0 1010 1011 laser intensity (W/cm2) University of California at Berkeley Q Lawrence Berkeley National

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us