The (Parameterized) complexity of Equitable Coloring Guilherme C. M. Gomes Matheus R. Guedes Vinicius F. dos Santos Carlos Vinicius G. C. Lima Universidade Federal de Minas Gerais Grafos e Combinatória - 1a temporada Equitable Coloring 1 / 34 Equitable Coloring Equitable Coloring Grafos e Combinatória - 1a temporada Equitable Coloring 2 / 34 Equitable Coloring Equitable (Vertex) Coloring Can we k-color G such that the size of two color classes differ by ≤ 1? Grafos e Combinatória - 1a temporada Equitable Coloring 3 / 34 Equitable Coloring Equitable (Vertex) Coloring Can we k-color G such that the size of two color classes differ by ≤ 1? Grafos e Combinatória - 1a temporada Equitable Coloring 3 / 34 Equitable Coloring Equitable (Vertex) Coloring Can we k-color G such that the size of two color classes differ by ≤ 1? Grafos e Combinatória - 1a temporada Equitable Coloring 3 / 34 Equitable Coloring Equitable (Vertex) Coloring Can we k-color G such that the size of two color classes differ by ≤ 1? Grafos e Combinatória - 1a temporada Equitable Coloring 3 / 34 Equitable Coloring Applications • Municipal garbage collection; • Processor task scheduling; • Communication control; • Server load balancing. Grafos e Combinatória - 1a temporada Equitable Coloring 4 / 34 Equitable Coloring Conjecture For every connected graph G which is neither a complete graph nor an odd-hole, χ=(G) ≤ ∆(G). Equitable Coloring Some important stuff I Equitable chromatic number The smallest integer k such that G is equitably k-colorable is the equitable chromatic number χ=(G). Grafos e Combinatória - 1a temporada Equitable Coloring 5 / 34 Equitable Coloring Some important stuff I Equitable chromatic number The smallest integer k such that G is equitably k-colorable is the equitable chromatic number χ=(G). Equitable Coloring Conjecture For every connected graph G which is neither a complete graph nor an odd-hole, χ=(G) ≤ ∆(G). Grafos e Combinatória - 1a temporada Equitable Coloring 5 / 34 Hajnal-Szmerédi Theorem Any graph G is equitably k-colorable if k ≥ ∆(G) + 1. Equivalently, ∗ χ=(G) ≤ ∆(G) + 1. Equitable ∆ Coloring Conjecture For every connected graph G which is not a complete graph, an odd-hole ∗ nor K2n+1,2n+1, for any n ≥ 1, χ=(G) ≤ ∆(G) holds. Ko-Wei Lih. “Equitable coloring of graphs”. In: Handbook of combinatorial optimization. Springer, 2013, pp. 1199–1248 Equitable Coloring Some important stuff II Equitable chromatic threshold The smallest integer k such that for every k0 ≥ k, G is equitably 0 ∗ k -colorable is its equitable chromatic threshold χ=(G). Grafos e Combinatória - 1a temporada Equitable Coloring 6 / 34 Equitable ∆ Coloring Conjecture For every connected graph G which is not a complete graph, an odd-hole ∗ nor K2n+1,2n+1, for any n ≥ 1, χ=(G) ≤ ∆(G) holds. Ko-Wei Lih. “Equitable coloring of graphs”. In: Handbook of combinatorial optimization. Springer, 2013, pp. 1199–1248 Equitable Coloring Some important stuff II Equitable chromatic threshold The smallest integer k such that for every k0 ≥ k, G is equitably 0 ∗ k -colorable is its equitable chromatic threshold χ=(G). Hajnal-Szmerédi Theorem Any graph G is equitably k-colorable if k ≥ ∆(G) + 1. Equivalently, ∗ χ=(G) ≤ ∆(G) + 1. Grafos e Combinatória - 1a temporada Equitable Coloring 6 / 34 Ko-Wei Lih. “Equitable coloring of graphs”. In: Handbook of combinatorial optimization. Springer, 2013, pp. 1199–1248 Equitable Coloring Some important stuff II Equitable chromatic threshold The smallest integer k such that for every k0 ≥ k, G is equitably 0 ∗ k -colorable is its equitable chromatic threshold χ=(G). Hajnal-Szmerédi Theorem Any graph G is equitably k-colorable if k ≥ ∆(G) + 1. Equivalently, ∗ χ=(G) ≤ ∆(G) + 1. Equitable ∆ Coloring Conjecture For every connected graph G which is not a complete graph, an odd-hole ∗ nor K2n+1,2n+1, for any n ≥ 1, χ=(G) ≤ ∆(G) holds. Grafos e Combinatória - 1a temporada Equitable Coloring 6 / 34 Equitable Coloring Some important stuff II Equitable chromatic threshold The smallest integer k such that for every k0 ≥ k, G is equitably 0 ∗ k -colorable is its equitable chromatic threshold χ=(G). Hajnal-Szmerédi Theorem Any graph G is equitably k-colorable if k ≥ ∆(G) + 1. Equivalently, ∗ χ=(G) ≤ ∆(G) + 1. Equitable ∆ Coloring Conjecture For every connected graph G which is not a complete graph, an odd-hole ∗ nor K2n+1,2n+1, for any n ≥ 1, χ=(G) ≤ ∆(G) holds. Ko-Wei Lih. “Equitable coloring of graphs”. In: Handbook of combinatorial optimization. Springer, 2013, pp. 1199–1248 Grafos e Combinatória - 1a temporada Equitable Coloring 6 / 34 Equitable Coloring The story so far... Class Complexity Trees P Forests P Bipartite NP-complete, even if k = 3 Co-bipartite P Cographs NP-complete, P for each fixed k Bounded Treewidth P Chordal NP-complete Block ? Split P Unipolar ? Interval NP-complete Co-interval P Grafos e Combinatória - 1a temporada Equitable Coloring 7 / 34 Equitable Coloring After this talk Class Complexity Trees P Forests P Bipartite NP-complete, even if k = 3 Co-bipartite P Cographs NP-complete, P for each fixed k Bounded Treewidth P Chordal NP-complete Block NP-complete Split P Unipolar P Interval NP-complete Co-interval P Grafos e Combinatória - 1a temporada Equitable Coloring 8 / 34 a1 For each item of A, build a gad- get with some key vertices. a2 All key vertices must have the same color. a3 Key vertices with color i → item a4 in i-th bin. 0 1 2 3 4 Equitable Coloring Bin Packing P Can we partition A = {a1,..., an} in k bins such that aj ∈bini aj = B? Grafos e Combinatória - 1a temporada Equitable Coloring 9 / 34 For each item of A, build a gad- get with some key vertices. All key vertices must have the same color. Key vertices with color i → item in i-th bin. Equitable Coloring Bin Packing P Can we partition A = {a1,..., an} in k bins such that aj ∈bini aj = B? a1 a2 a3 a4 0 1 2 3 4 Grafos e Combinatória - 1a temporada Equitable Coloring 9 / 34 Equitable Coloring Bin Packing P Can we partition A = {a1,..., an} in k bins such that aj ∈bini aj = B? a1 For each item of A, build a gad- get with some key vertices. a2 All key vertices must have the same color. a3 Key vertices with color i → item a4 in i-th bin. 0 1 2 3 4 Grafos e Combinatória - 1a temporada Equitable Coloring 9 / 34 a1 a2 y 1 y2 a3 a4 0 1 2 3 4 y y4 3 k = 4 Equitable Coloring (a, k)-flowers Create a + 1 cliques with k − 1 vertices and add one universal vertex. Grafos e Combinatória - 1a temporada Equitable Coloring 10 / 34 y 1 y2 y y4 3 Equitable Coloring (a, k)-flowers Create a + 1 cliques with k − 1 vertices and add one universal vertex. a1 a2 a3 a4 0 1 2 3 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 10 / 34 Equitable Coloring (a, k)-flowers Create a + 1 cliques with k − 1 vertices and add one universal vertex. a1 a2 y 1 y2 a3 a4 0 1 2 3 4 y y4 3 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 10 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 Equitable Coloring Flowers, colors, and bins bin1 bin2 bin3 y bin4 0 1 2 3 4 aj = 2, k = 4 k = 4 Grafos e Combinatória - 1a temporada Equitable Coloring 11 / 34 X |V (G)| = ((aj + 1)(k − 1) + 1) j∈[n] X = (k − 1) n + aj + n j∈[n] = (k − 1)(n + kB) + n = kn + k2B − n − kB + n = k(kB − B + n) Equitable Coloring Block Graphs Theorem equitable coloring of block graphs is NP-complete. Construct a graph G as the disjoint union of flowers Fj = F (aj , k) and try to equitably k-color it. Grafos e Combinatória - 1a temporada Equitable Coloring 12 / 34 X = (k − 1) n + aj + n j∈[n] = (k − 1)(n + kB) + n = kn + k2B − n − kB + n = k(kB − B + n) Equitable Coloring Block Graphs Theorem equitable coloring of block graphs is NP-complete. Construct a graph G as the disjoint union of flowers Fj = F (aj , k) and try to equitably k-color it. X |V (G)| = ((aj + 1)(k − 1) + 1) j∈[n] Grafos e Combinatória - 1a temporada Equitable Coloring 12 / 34 = (k − 1)(n + kB) + n = kn + k2B − n − kB + n = k(kB − B + n) Equitable Coloring Block Graphs Theorem equitable coloring of block graphs is NP-complete. Construct a graph G as the disjoint union of flowers Fj = F (aj , k) and try to equitably k-color it.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages114 Page
-
File Size-