339755528006.Pdf

339755528006.Pdf

THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia ISSN: 0495-4548 ISSN: 2171-679X [email protected] Universidad del País Vasco/Euskal Herriko Unibertsitatea España Vineberg, Susan Mathematical explanation and indispensability* THEORIA. Revista de Teoría, Historia y Fundamentos de la Ciencia, vol. 33, no. 2, 2018, pp. 233-247 Universidad del País Vasco/Euskal Herriko Unibertsitatea España DOI: https://doi.org/10.1387/theoria.17615 Available in: https://www.redalyc.org/articulo.oa?id=339755528006 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative THEORIA ESTABLISH E D IN 1952 BY MIGU E L SÁNCH E Z -MAZAS Vol. 33/2 • May 2018 Second Series An International Journal for Theory, History and Foundations of Science CALIJ Centro de Análisis, Lógica e Informática Jurídica (CALIJ) http://www.ehu.eus/theoria T H E O R I A REVISTA DE TEORÍA, HISTORIA Y FUNDAMENTOS DE LA CIENCIA AN INTERNATIONAL JOURNAL FOR THEORY, HISTORY AND FOUNDATIONS OF SCIENCE ESTABLISH E D in 1952 by MIGUEL SÁNCHEZ-MAZAS Second Series EDITORIAL BOARD Editor-in-chief: Andoni IBARRA (University of the Basque Country, UPV/EHU) Editors: Cristina CORREDOR (Universidad de Valladolid), Antonio DIÉGUEZ (Universidad de Málaga) Logic and philosophy of logic and mathematics: José Luis ZALABARDO (University College London) Philosophy of language: Genoveva MARTÍ (ICREA & Universitat de Barcelona) Philosophy of mind and philosophy of cognitive science: Agustín VICENTE (Ikerbasque & UPV/EHU) Philosophy of science: José DÍEZ (Universitat de Barcelona) History of science: María Jesús SANTESMASES (CSIC) Science and Tecnhology Studies: Miguel GARCÍA-SANCHO (University of Edinburgh) Managing Editor: Mario SANTOS-SOUSA (University College London) ADVISORY BOARD Juan José Acero (Universidad de Granada), Ignazio Angelelli (University of Texas at Austin), Manuel Atienza (Universitat d’Alacant), Salvador Barberà (Universitat Autònoma de Barcelona), Gustavo Bueno † (Universidad de Oviedo), Nancy Cartwright (Durham University), Newton C.A. da Costa (Universidade de São Paulo), Joseph Dauben (City University of New York), Elías Díaz (Universidad Autónoma de Madrid), Javier Echeverria (Ikerbasque & UPV/EHU), Josep Maria Font (Universitat de Barcelona), Manuel García- Carpintero (Universitat de Barcelona), Manuel Garrido † (Universidad Complutense de Madrid), Jaakko Hintikka (Boston University), Philip Kitcher (Columbia University), Bruno Latour (Sciences Po, Paris), Larry Laudan (UNAM), Javier de Lorenzo (Universidad de Valladolid), Thomas Mormann (UPV/EHU), C. Ulises Moulines (Ludwig-Maxilians-Universität München), Carlos Moya (Universitat de València), Javier Muguerza (UNED), León Olive (UNAM), Carlos París † (Universidad Autónoma de Madrid), Carlos Solís (UNED), Roberto Torretti (Universidad de Puerto Rico), Enric Trillas (Universidad Politécnica de Madrid), Nicanor Ursua (UPV/EHU), Bas C. van Fraassen (San Francisco State University) EDITORIAL OFFICE Editorial manager: María Luisa CUTANDA (CALIJ, Donostia-San Sebastián, Spain) Editorial assistant: Garazi MONTUSCHI (UPV/EHU) Mailing address: CALIJ-THEORIA, Elhuyar plaza 2, 20018, Donostia-San Sebastián, Spain Tel.: (+34) 943 017 447. Fax: (+34) 943 015 990. E-mail: [email protected] THEORIA is a four-monthly journal (issues in January, May and September). The contents of this journal are covered, among others, by the following abstracting and indexing services: Arts & Humanities Citation In- dex®, ISI Alerting Services, Current Contents® / Arts & Humanities, Bulletin Signalétique 519, DICE, ICYT, ISOC and RESH of the Spanish research center CSIC, Mathematical Reviews, Current Mathematical Publica- tions, MathSci, Philosopher’s Index, Repertoire bibliographique de la Philosophie, and SCOPUS. THEORIA’s website http://www.ehu.eus/theoria THEORIA REVISTA DE TEORÍA, HISTORIA Y FUNDAMENTOS DE LA CIENCIA CONTENTS Volume 33/2, May 2018, pp. 157-373 ISSN 0495-4548 Monographic Section I Updating indispensabilities: Putnam in memoriam Guest Editor: Mary Leng 159 Mary Leng Guest Editor’s Introduction 161 Concha Martínez Vidal Putnam and contemporary fictionalism 165 José Miguel Sagüillo Hilary Putnam on the philosophy of logic and mathematics 183 Otávio Bueno Putnam’s indispensability argument revisited, reassessed, revived 201 Sorin Bangu Indispensability, causation and explanation 219 Susan Vineberg Mathematical explanation and indispensability 233 Matteo Plebani The indispensability argument and the nature of mathematical objects 249 Monographic Section II From basic cognition to mathematical practice Guest Editors: María de Paz and José Ferreirós 265 María de Paz and José Ferreirós Guest Editors’ Introduction 267 Rafael Núñez Praxis matemática: reflexiones sobre la cognición que la hace posible 271 Markus Pantsar Early numerical cognition and mathematical processes 285 Roy Wagner Cognitive stories and the image of mathematics 305 José Ferreirós y Manuel J. García-Pérez ¿«Natural» y «euclidiana»? Reflexiones sobre la geométrica práctica y sus raíces cognitivas 325 Valeria Giardino Manipulative imagination: how to move things around in mathematics 345 Sorin Costreie The geometrical basis of arithmetical knowledge: Frege and Dehaene 361 Summary 371 Mathematical explanation and indispensability* Susan Vineberg Received: 01/02/2017 Final version: 17/04/2018 BIBLID 0495-4548(2018)33:2p.233-247 DOI: 10.1387/theoria.17615 ABSTRACT: This paper discusses Baker’s Enhanced Indispensability Argument (EIA) for mathematical realism on the basis of the indispensable role mathematics plays in scientific explanations of physical facts, along with various re- sponses to it. I argue that there is an analogue of causal explanation for mathematics which, of several basic types of explanation, holds the most promise for use in the EIA. I consider a plausible case where mathematics plays an explanatory role in this sense, but argue that such use still does not support realism about mathematical objects. Keywords: indispensability, explanation, realism, structuralism. RESUMEN: Este artículo analiza la versión ‘mejorada’ del argumento de la indispensabilidad (EIA) de Baker y varias de las respuestas que ha recibido. Este argumento pretende establecer el realismo matemático en virtud del papel indis- pensable que las matemáticas juegan en las explicaciones científicas de los hechos físicos. Argumento que hay un análogo de explicación causal para las matemáticas que, de los varios sentidos básicos de explicación, parece el más adecuado para el EIA. Analizo un caso plausible en el que las matemáticas juegan un papel explicativo en este sen- tido, pero concluyo que este uso no es suficiente para establecer el realismo acerca de los objetos matemáticos. Palabras clave: indispensabilidad, explicación, realismo, estructuralismo. Introduction The so-called ‘Quine/Putnam indispensability argument’ has been discussed over the past half century as the main impediment to mathematical antirealism. Although they are of- ten lumped together, the arguments given by Quine and Putnam are significantly differ- ent.1 Quine’s argument depends upon his controversial claim of confirmational holism, and concludes that given the use of mathematics in our best (and well-confirmed) scien- tific theories, we must accept the existence of mathematical objects. Putnam’s argument, by contrast, emphasizes the use of mathematics in formulating physical theories that he thinks (in accordance with scientific realism) we have reason to regard as true. Putnam’s claim, * An earlier version of this paper was presented in November 2016 at the workshop “Updating Indis- pensabilities: Hilary Putnam in Memoriam”. I want to thank the audience for their helpful comments on my paper. I especially want to thank Concha Martínez Vidal and the editor, María José García- Encinas, for their kind support. 1 A number of crucial differences are noted in (Vineberg 1998). Colyvan (Colyvan 2015) presents a ver- sion of the argument he identifies as ‘The Quine-Putnam Indispensability argument’, but also notes that Quine and Putnam gave different arguments. (Quine 1961a, 1961b, 1976, 1969) (Putnam 1979a, 1979b) THEORIA 33/2 (2018): 233-247 234 Susan Vineberg that the indispensable use of mathematics in formulating statements of physical theory that are taken as true requires accepting the mathematics so used, has generally been read as car- rying a commitment to the existence of mathematical objects as in Quine, and so, at least in broad outline, the arguments of Quine and Putnam have been taken to have much the same core. Nonetheless, Putnam makes clear that he regards his indispensability argument as one for the truth of mathematical claims, but not for traditional Platonism about math- ematical objects (Putnam 2012). More recently, Baker has presented and defended what he calls an ‘enhanced’ indis- pensability argument (EIA) for the existence of mathematical objects that stems from the use of mathematics in explaining physical facts (Baker 2009). I begin with a discussion of this version of the indispensability argument and its presuppositions, along with ways of responding to it and their relative merits. This sets up the main focus of the paper, which concerns how mathematics figures in explaining physical facts and whether mathemati- cal claims should thereby be accepted.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us