Department of Energy Technology Receiver Design Methodology for Solar Tower Power Plants Master Thesis Joseph Stalin Maria Jebamalai Supervisors: Dipl.-Ing. Peter Sch¨ottl,Internal Supervisor, Fraunhofer ISE, Freiburg Dr. Bj¨ornLaumert, External Supervisor, KTH Royal Institute of Technology KTH School of Industrial Engineering and Management Department of Energy Technology Division of Heat and Power Technology SE - 100 44, Stockholm August 2016 Master of Science Thesis EGI_2016: 070 MSC EKV1157 Receiver Design Methodology for Solar Tower Power Plants Joseph Stalin Maria Jebamalai Approved Examiner Supervisor 16th August 2016 Dr. Björn Laumert Dipl.-Ing. Peter Schöttl Dr. Björn Laumert Commissioner Contact person Dr. Björn Laumert Abstract – Swedish Centrala solmottagarsystem (CRS) är på frammarsch på grund av deras höga koncentrationsfaktor och höga potential att minska kostnaderna genom att öka kapacitetsfaktorn av solkraftanläggningar med lagring. I CRS kraftanläggningar är solljuset fokuserat på mottagaren genom arrangemanget av tusentals speglar för att omvandla solstrålning till värme för att driva värmecykler. Solmottagare används för att överföra värmeflux från solen till arbetsmediet. Generellt arbetar solmottagare i driftpunkter med hög temperatur och därför genereras strålningsförluster. Vidare har solmottagaren en betydande påverkan på den totala kostnaden för kraftverket. Således har konstruktion och modellering av mottagaren en signifikant påverkan på kraftanläggningseffektivitet och kostnad. Målet med detta examensarbete är att utveckla en designmetodik för att beräkna geometrin hos solmottagaren och dess verkningsgrad. Denna designmetodik riktar sig främst till stora kraftverk i området 100 MWe, men även skalbarheten av designmetoden har studerats. Den utvecklade konstruktionsmetoden implementerades i in-house designverktyg devISEcrs som även integrerar andra moduler som modellerar solspegelfält, lagring och kraftblocket för att beräkna den totala kraftverksverkningsgraden. Designmodeller för de andra komponenterna är delvis redan implementerade, men de är modifierade och/eller utvidgade för att integrera den nya CRS mottagarmodellen. Slutligen har hela mottagarmodellen validerats genom att jämföra resultaten med testdata från litteraturen. Abstract Central Receiver Systems (CRS) are gaining momentum because of their high concentration and high potential to reduce costs by means of increasing the capacity factor of the plant with storage. In CRS plants, sunlight is focused onto the receiver by the arrangement of thousands of mirrors to convert the solar radiation into heat to drive thermal cycles. Solar receivers are used to transfer the heat flux received from the solar field to the working fluid. Generally, solar receivers work in a high-temperature environment and are therefore subjected to different heat losses. Also, the receiver has a notable impact on the total cost of the power plant. Thus, the design and modelling of the receiver has a significant influence on efficiency and the cost of the plant. The goal of the master thesis is to develop a design methodology to calculate the geometry of the receiver and its efficiency. The design methodology is mainly aimed at large-scale power plants in the range of 100 MWe, but also the scalability of the design method has been studied. The developed receiver design method is implemented in the in-house design tool devISEcrs and also it is integrated with other modules like solar field, storage and power block to calculate the overall efficiency of the power plant. The design models for other components are partly already implemented, but they are modified and/or extended according to the requirements of CRS plants. Finally, the entire receiver design model is validated by comparing the results of test cases with the data from the literature. ii Receiver Design Methodology for Solar Tower Power Plants Acknowledgement I express my sincere gratitude to Fraunhofer Institute of Solar Energy Systems (ISE) and KTH Royal Institute of Technology for providing this wonderful opportunity to carry out my master thesis in Germany. It was an incredible experience for me as I have gained lots of knowledge on CSP power plants. I would take this opportunity to thank my supervisor at Fraunhofer ISE, Dipl.-Ing. Peter Sch¨ottl for his continuous guidance and knowledge sharing throughout the thesis. I extend my gratitude to my academic supervisor, Dr. Bj¨ornLaumert for his support. Special thanks to KTH and Fraunhofer ISE for providing financial support and all the necessary facilities. I am also thankful to Anna Heimsath, Bernhard Seubert, Claudia Sutardhio, De Wet Van Rooyen, Pankaj Deo, Raymond Branke, Shaab Rohani and Thomas Fluri for their contributions and dis- cussion about the project. Furthermore, I would like to thank all the staff members who helped me through all phases of my thesis. Finally, I would like to thank my parents and my friends, Abhishek Srujan, Anand Bhaskaran and Sai Janani Ramachandran for their continuous support and motivation all days, especially during my hard times. Receiver Design Methodology for Solar Tower Power Plants iii Contents Contents iv List of Figures vi List of Tables viii Nomenclature ix 1 Introduction 1 1.1 Solar Radiation......................................1 1.2 Concentrated Solar Power (CSP)............................2 1.3 Central Receiver Systems (CRS)............................4 1.4 Research Statement...................................6 1.5 Thesis Overview.....................................7 2 Literature Review8 2.1 Tubular Receivers....................................8 2.1.1 Water/Steam...................................8 2.1.2 Molten Salt....................................9 2.1.3 Liquid Sodium.................................. 10 2.1.4 Sodium/Salt Binary............................... 10 2.2 Design Criteria...................................... 11 2.2.1 Receiver Design Methodology.......................... 11 2.2.2 Allowable Peak Flux Limit........................... 12 2.2.3 Receiver Sizing.................................. 13 2.2.4 Receiver Aspect Ratio.............................. 13 2.2.5 Tube Diameter Selection............................. 14 2.2.6 Fluid Flow Path Selection............................ 14 2.2.7 Tower Sizing................................... 15 2.3 Cavity Specific Design Criteria............................. 15 2.3.1 Cavity Receiver Geometry............................ 16 2.3.2 Cavity Opening Angle.............................. 16 2.3.3 Lip Height (Aperture-to-Total Height Ratio)................. 16 2.3.4 Cavity Inclination................................ 17 2.4 Heat Transfer Model................................... 17 2.4.1 External Receiver................................ 18 2.4.2 Cavity Receiver.................................. 21 3 Design Methodology 25 3.1 Design Approach..................................... 25 3.2 General Receiver Design Model............................. 27 3.2.1 Receiver Thermal Power............................. 27 3.2.2 Calculation of HTF Properties......................... 27 iv Receiver Design Methodology for Solar Tower Power Plants CONTENTS 3.2.3 Receiver Sizing.................................. 27 3.2.4 Receiver Surface Temperature Calculation................... 28 3.2.5 Mass Flow Rate Calculation........................... 29 3.2.6 Pressure Loss and Pump Power Calculation.................. 29 3.3 External Receiver Design Model............................ 30 3.3.1 Geometry Design................................. 30 3.3.2 Tube and Panel Design............................. 30 3.3.3 Tower Height Design............................... 32 3.3.4 Receiver Thermal Efficiency........................... 33 3.4 Cavity Receiver Design Model.............................. 34 3.4.1 Geometry Design................................. 34 3.4.2 Tube and Panel Design............................. 36 3.4.3 Tower Height Design............................... 36 3.4.4 Receiver Thermal Efficiency........................... 37 4 Implementation 39 4.1 devISEcrs - A Design Tool............................... 39 4.2 Implementation Structure................................ 40 4.3 Interface of Receiver Classes............................... 41 4.3.1 Receiver Class.................................. 41 4.3.2 External Receiver Class............................. 41 4.3.3 Cavity Receiver Class.............................. 41 5 Validation and Results 44 5.1 Receiver Design Validation............................... 44 5.1.1 External Receiver................................ 44 5.1.2 Cavity Receiver.................................. 48 5.2 Receiver Thermal Losses Validation.......................... 49 5.2.1 External Receiver................................ 49 5.2.2 Cavity Receiver.................................. 50 5.3 Effect of Spillage Loss on Heliostat Size........................ 51 6 Conclusion and Future Work 53 6.1 Conclusion........................................ 53 6.2 Future Work....................................... 53 Bibliography 54 Receiver Design Methodology for Solar Tower Power Plants v List of Figures 1.1 Direct, diffuse and reflected radiation [8]........................1 1.2 World solar DNI map [50]................................2 1.3 Example of solar thermal power plant with four subsystems [3]...........3 1.4 Types of CSP collectors [5]...............................4 1.5 Gemasolar 20MW solar tower power plant in Sevilla, Spain [6]...........5 1.6 Optical losses in the heliostat field...........................5
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages70 Page
-
File Size-