Human Capital and Income Inequality: Some Facts and Some Puzzles

Human Capital and Income Inequality: Some Facts and Some Puzzles

Working Paper Nº 12/ 28 Madrid, March 2014 Human Capital and Income Inequality: Some Facts and Some Puzzles Amparo Castelló-Climent Rafael Doménech 12/28 Working Papers Madrid, March 2014 Human Capital and Income Inequality: Some Facts and Some Puzzles†* Amparo Castelló-Climenta and Rafael Doménecha,b March 2014 Abstract Using an updated data set on human capital inequality for 146 countries from 1950 to 2010, this paper documents several facts regarding the evolution of income and human capital inequality. The main findings reveal that, in spite of a large reduction in human capital inequality around the world, the inequality in the distribution of income has hardly changed. In many regions, the income Gini coefficient in 1960 was very similar to that in 2005. Therefore, improvements in education are not a sufficient condition to reduce income inequality, even though they significantly improve life standards of people at the bottom of the income distribution. We do find evidence that increasing returns to education and exogenous forces such as skill-biased technological progress or globalization have offset the effects of the fall in education inequality, therefore explaining the low correlation between the changes in income and education inequality. Keywords: education inequality, attainment levels, income distribution, panel data. JEL Classificaction: I24, O11, O15, O5. †: This document is an update of WP 12/28 published in October 2012. * We are grateful for the comments received at several seminars and at the 28th Annual Meeting of the European Economic Associa- tion, held in Gothenburg. A. Castelló would like to thank the Spanish Ministry of Economy and Competitiveness for financial support through ECO2011-29283 project and the Ramón y Cajal Programme. R. Doménech thanks the Ministry of Economy and Competitive- ness, ECO2011-29050 for financial support. Contact:[email protected] , [email protected]. a: University of Valencia, Spain. b: BBVA Research, Spain. HUMAN CAPITAL AND INCOME INEQUALITY 2 1. Introduction In the last few decades, most developing countries have made a great effort to eradicate illiteracy in several hundreds of millions of people. As a result, the inequality in the distri- bution of education has been reduced by more than half: the average human capital Gini coefficient dropped from 0.55 in 1960 to 0.28 in 2005. However, in spite of the equalizing process in the distribution of education, inequality in the distribution of income has hardly changed. The value of the average income Gini coefficient for the same group of countries was almost equal in 1960 (0.42) as in 2005 (0.41). This trend is not restricted to develop- ing countries alone: in 1960 the human capital Gini coefficient in the high income OECD countries was 0.22 and decreased to 0.15 in 2005, whereas the income Gini coefficient has remained unchanged at 0.30. This paper analyzes the above evidence in detail and contributes to the literature in several aspects. Firstly, the paper provides the most comprehensive data set on human capital inequality variables, covering 146 countries over a 60-year period. Hitherto, the most comprehensive dataset was that of Castelló and Doménech (2002), which takes the educational attainment levels from Barro and Lee (2001) to compute the Gini coefficient and the distribution of education by quintiles. As Castelló and Doménech (2002) utilize Barro and Lee˙s (2001) data set, the inequality measures are subject to the same criticisms as the average years of schooling. This paper uses the attainment levels by Barro and Lee (2013), which include more countries and years, reduces some measurement errors, and solves some of the shortcomings revealed by De la Fuente and Doménech (2006) and Cohen and Soto (2007). The new inequality indicators are available for 146 countries from 1950 to 2010 in a five-year period and include a total of 1898 observations. Secondly, using this data set, the paper shows some new, interesting stylized facts regarding the evolution of human capital and income inequality.1 From 1950 to 2010, there has been a significant reduction in human capital inequality around the world. In most countries, the large reduction of education inequality has mainly been due to the sizeable decline in the share of illiterates. In most advanced countries, however, there is not a clear pattern in the evolution of education inequality, and the human capital Gini coefficient has been mainly determined by the distribution of education among the literate popula- tion. For a large sample of countries, the correlation between income and human capital Gini coefficients is low. The average income inequality is greater than that of human cap- ital, whereas its variance is lower. In fact, both across world regions and a large sample 1 Previous contributions to the literature have found that income inequality is positively correlated to educa- tion inequality and negatively related to education (e.g. Becker and Chiswick, 1966, Ahluwalia, 1976). Others, however, found that schooling inequality has a marginal negative, rather than positive, effect on income inequal- ity (Ram, 1984). De Gregorio and Lee (2002) show that, although countries with higher educational attainments and a more equal distribution of education have a more equal distribution of income, a significant proportion of the variation in income inequality remains unexplained. HUMAN CAPITAL AND INCOME INEQUALITY 3 of countries, income inequality has remained relatively stable over a period of 45 years. Everything included, the evidence shows the reduction in human capital inequality has not been accompanied by declines in the income Gini coefficient. The large expansion in literacy in most developing countries has clearly reached the lowest income groups. As more productive workers will be rewarded with higher wages, we would expect an equal- izing process in the distribution of income stemming from the increase in the income at the bottom part of the distribution. Thus, the stability of the income Gini coefficient is puzzling given the large reduction of human capital inequality. Thirdly, we provide alternative explanations for the low correlation observed be- tween the evolution of human capital and income inequality. A first explanation for the puzzle is that the returns to education are convex. The impact of the distribution of educa- tion on income inequality will depend not only on the size of the investments in education but also on the rate of return of these investments. Extensive empirical evidence, based on a Mincer (1974) earning function, shows that highly educated workers earn higher wages on average. Nevertheless, whether the returns increase or decrease with the level of edu- cation is still an open debate. The traditional literature suggests the returns decrease with the level of schooling (e.g. Psacharopoulos and Patrinos, 2004). Recent evidence, however, shows that in many countries, the returns to education in the 1990s and 2000s are greater for higher education than for primary schooling (see, for example, Colclough et. al., 2010). If the returns to education are increasing, an extra year of education at the primary level brings a smaller increase in wages than it does at higher levels of education. We test this hypothesis in a sample of 144 countries for the period 1950-2010, and our results reveal that a one-year increment in university is much more productive than a one-year increase in primary education. This evidence is in line with recent studies for individual countries that find returns to education as an explanation for the evolution of income and wage in- equality. In the case of China, Ning (2010) documents that increasing returns to education has played a key role in explaining the rapid education expansion and the increment in in- come inequality. Extensive evidence has been reported for the United States. Goldin and Katz (2007) estimate earnings regressions for 1980 and 2005, showing that rising returns to education have played a key role in explaining the increase in wage inequality in the U.S. This evidence confirms Lemieux’s (2006) results, who found that increased returns to post- secondary education accounted for the majority of the increase in wage inequality between 1973 and 2005. The evidence in this paper suggests that increasing returns to education could be a general phenomenon across countries, and an important factor explaining the lack of correlation between human capital and income inequality worldwide. A second alternative explanation could be that improvements in literacy, which in- crease the wage of the population at the bottom end of income distribution, have also HUMAN CAPITAL AND INCOME INEQUALITY 4 coincided with an increase of wages in cohorts with higher education, such that all of them maintain their income shares. The latter could be the result of exogenous forces such as globalization (e.g., Goldberg and Pavcnik, 2007) or skill-biased technological progress (e.g., Katz and Murphy, 1992) that have increased wages at the top. Using data on skill premia in a sample of 31 countries from 2000 to 2011, we obtain statistically significant ev- idence in favor of these hypotheses. We corroborate this result in a broader sample that includes 133 countries in a specification where the dependent variable is the income Gini coefficient. Other things being equal, we find that reductions in inequality in the distrib- ution of education have been accompanied by reductions in inequality in the distribution of income. However, at the same time, we find that a higher demand for skilled workers along with greater trade and financial openness have contributed to the increase in income inequality. On the whole, the evidence indicates that even if there has been an increment in the supply of skills and a reduction in human capital inequality, their effect on income inequality has been offset by the increase in the demand for skilled workers and the effect of globalization.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us