Cosmic Magnetism with Information Field Theory

Cosmic Magnetism with Information Field Theory

Cosmic Magnetism with Information Field Theory Torsten Enßlin, Mona Frommert, Henrick Junklewitz, Niels Oppermann, Georg Robbers, Petr Kuchar Max-Planck-Institut für Astrophysik magneticmagnetic feldfeld observablesobservables data: NVSS, Taylor et al. 2009 data: WMAP, WMAP-team map: Oppermann et al., arXiv:1008.1243 map: Page et al. magneticmagnetic helicityhelicity ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS ProbingProbing HelicityHelicity byby LITMUSLITMUS TheThe FaradayFaraday rotationrotation skysky Taylor,Stil,Sunstrum 2009 37,534 RM extragalactic RM-sources in the northern sky InformationInformation FieldField TheoryTheory { Why Information Field Theory ? inverse problem => Information Theory spatially distributed quantity => Field Theory Information fields of interest: ● magnetic field in 3d ● Faraday rotation map ● polarized emissivity per Faraday depth ● cosmic matter distribution ● magnetic power spectra, ... Information sources: ● radio polarimetry: RM ● radio polarimetry: total I, PI ● galaxy surveys ● X-rays, ... What is information theory ? What is information? knowledge about the set of possibilities Ω their individual probabilities P:Ω ➝ [0,1] knowledge state (Ω, P) information theory is the math of knowledge states it is simply probability theory applied to reasoning How to obtain information ? physical signal s 1) prior knowledge: P(s) 2) measurement: d = R(s) + n, P(d|s) 3) inference: P(s|d)=P(d|s) P(s)/P(d), d ➙ s When the signal is a field, Bayesian methods are unavoidable since the number of signal space dimensions exceed the data space dimensions by a large – if not infinite – factor! InformationInformation HamiltonianHamiltonian s = signal d = data posterior likelihood prior evidence BasicBasic idea:idea: expandexpand posteriorposterior aroundaround GaussianGaussian FreeFree TheoryTheory GaussianGaussian signalsignal && noise,noise, linearlinear responseresponse WienerWienerFreeFree flterflter TheoryTheory theorytheory GaussianGaussian signalsignalknown && for noise,noise, 60 yearslinearlinear responseresponseinformationinformation sourcesource informationinformation propagatorpropagator InteractingInteracting TheoryTheory non-Gaussiannon-Gaussian signal,signal, noise,noise, oror non-linearnon-linear responseresponse Optimal algorithms for non-linear inverse problems can be build on linear operations like Wiener filtering !!! Optimal algorithms for non-linear inverse problems can be build on linear operations like Wiener filtering !!! Optimal algorithms for non-linear inverse problems can be build on linear operations like Wiener filtering !!! dictionary Translation: inference problem → statistical field theory Dictionary: log-Posterior = negative Hamiltonian Evidence = partition function Z Wiener variance = information propagator noise weighted data → information source inference algorithms ← Feynman diagrams maximum a Posteriori = classical solution uncertainty corrections = loop corrections Shannon information = negative entropy Reconstruction of signals with unknown spectra Enßlin & Frommert arXiv:1002.2928 Image credits: Planck team Joint posterior parameter space P (s,Sp|d) signal space Gaussian data model Wiener filter Spectral prior P (pi) pi Generic filter formula Jeffreys prior Classical map Filter parameters TheThe FaradayFaraday rotationrotation skysky Taylor,Stil,Sunstrum 2009 37,534 RM extragalactic RM-sources in the northern sky Oppermann et al. arXiv:1008.1243 TheThe FaradayFaraday rotationrotation skysky InformationInformation FieldField TheoryTheory } LITMUSLITMUS Local Inference Test for Magnetic felds Uncovering HeliceS LITMUSLITMUS Local Inference Test for Magnetic felds Uncovering HeliceS Observational Setup Hydra A cluster MagneticMagnetic powerpower spectraspectra inin thethe coolcool corecore ofof thethe HydraHydra AA clustercluster Kuchar & Enßlin (2009) Conclusions ● magnetic field observables allow deduction of helicity and energy spectrum ● inference problems require information theory ● information field theory is a statistical field theory ● information Hamiltonian = - log P(data, signal) ● information propagator = Wiener variance, ... ● perturbative, renormalization, thermodynamical, & sampling methods can be used ● providing us with the mean map, signal uncertainty, ... Outlook 1.4 GHz: Reich & Wolleben 22 GHz: WMAP team Thank you ! .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    60 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us