Navier-Stokes Equation

Navier-Stokes Equation

,90HWHRURORJLFDO'\QDPLFV ,9 ,QWURGXFWLRQ ,9)RUFHV DQG HTXDWLRQ RI PRWLRQV ,9$WPRVSKHULFFLUFXODWLRQ IV/1 ,90HWHRURORJLFDO'\QDPLFV ,9 ,QWURGXFWLRQ ,9)RUFHV DQG HTXDWLRQ RI PRWLRQV ,9$WPRVSKHULFFLUFXODWLRQ IV/2 Dynamics: Introduction ,9,QWURGXFWLRQ y GHILQLWLRQ RI G\QDPLFDOPHWHRURORJ\ ÎUHVHDUFK RQ WKH QDWXUHDQGFDXVHRI DWPRVSKHULFPRWLRQV y WZRILHOGV ÎNLQHPDWLFV Ö VWXG\ RQQDWXUHDQG SKHQRPHQD RIDLU PRWLRQ ÎG\QDPLFV Ö VWXG\ RI FDXVHV RIDLU PRWLRQV :HZLOOPDLQO\FRQFHQWUDWH RQ WKH VHFRQG SDUW G\QDPLFV IV/3 Pressure gradient force ,9)RUFHV DQG HTXDWLRQ RI PRWLRQ K KKdv y 1HZWRQµVODZ FFm==⋅∑ i i dt y )ROORZLQJDWPRVSKHULFIRUFHVDUHLPSRUWDQW ÎSUHVVXUHJUDGLHQWIRUFH 3*) ÎJUDYLW\ IRUFH ÎIULFWLRQ Î&RULROLV IRUFH IV/4 Pressure gradient force ,93UHVVXUHJUDGLHQWIRUFH y 3UHVVXUH IRUFHDUHD y )RUFHIURPOHIW =⋅ ⋅ Fpdydzleft ∂p F=− p + dx dy ⋅ dz right ∂x ∂∂pp y VXP RI IRUFHV FFF= + =−⋅⋅⋅=−⋅ dxdydzdV pleftrightx ∂∂xx ∂∂ y )RUFHSHUXQLWPDVV −⋅pdV =−⋅1 p ∂∂ρ xdmm x ρ = m m V K 11K y *HQHUDO f=− ∇ p =− ⋅ grad p p ρ ρ mm 1RWHXQLWLV 1NJ IV/5 Pressure gradient force ,93UHVVXUHJUDGLHQWIRUFH FRQWLQXHG K 11K f=− ∇ p =− ⋅ grad p p ρ ρ mm K K ∇p y SUHVVXUHJUDGLHQWIRUFHDFWVÄGRZQKLOO³RI WKHSUHVVXUHJUDGLHQW y ZLQG IRUPHGIURPSUHVVXUHJUDGLHQWIRUFHLVFDOOHG(XOHULDQ ZLQG y WKLV W\SH RI ZLQGVDUHIRXQG ÎDW WKHHTXDWRU QR &RULROLVIRUFH ÎVPDOOVFDOH WKHUPDO FLUFXODWLRQ NP IV/6 Thermal circulation ,93UHVVXUHJUDGLHQWIRUFH FRQWLQXHG y7KHUPDOFLUFXODWLRQLVFDXVHGE\DKRUL]RQWDOWHPSHUDWXUHJUDGLHQW Î([DPSOHV RYHQ ZDUP DQG ZLQGRZ FROG RSHQILHOG ZDUP DQG IRUUHVW FROG FROGODNH DQGZDUPVKRUH XUEDQUHJLRQ ZDUP DQG JUHHQVXUURXQGLQJV FROG FRRORFHDQ DQGZDUPODQG VHHEUHH]H ZDUPRFHDQ DQG FROG ODQG QLJKWZLQWHU yLQVRPHFDVHV WKHUPDO FLUFXODWLRQDOVRSOD\VDQLPSRUWDQWUROH DW ODUJHUVFDOHV ÎWUDGHZLQGV HTXDWRU DQGFRROVXEWURSLFV ÎPRQVRRQ ,QGLDQ2FHDQDQG,QGLDQVXEFRQWLQHQW EXWQRWHWKDW&RULROLVIRUFHDOVRFRQWULEXWHWRWKHVHW\SHV RI FLUFXODWLRQ IV/7 Thermal circulation ,93UHVVXUHJUDGLHQWIRUFH FRQWLQXHG %DURFOLQLF FRQGLWLRQ LQGXFH FLUFXODWLRQ :DUQHFNH IV/8 baroclinity and thermal circulation : : 3UHVVXUHJUDGLHQWIRUFH EDURFOLQLW\ :DUQHFNH IV/9 Gravity force ,9*UDYLW\ IRUFH K K y 1HZWRQ ODZ =⋅ Fmgg KKK y JUDYLW\IRUFH =− =− ⋅ fggkg 1RWHXQLWLV 1NJ y VXUIDFHV RI HTXDOJHRSRWHQWLDOKHLJKW ] H[SHULHQFHWKHVDPHJUDYLWDWLRQDO IRUFH 1(,)h ghϕ ÎJHRSRWHQWLDOKHLJKW zdhghh=≈⋅∫ '(,')ϕ h´0= ggoo Î*HRSRWHQWLDO φ =⋅=ϕ ⋅ gzo g(,) hh 0 KKKKKK =−∇ ⋅φ =−∇ ⋅φ φ = f gz h 0 ⋅ gzo IV/10 Friction ,9)ULFWLRQ y )ULFWLRQIRUFHVDSSHDUZKHQWKH ZLQG ILHOGLVVKHDUHG YHUWLFDOVKHDULQJHJMHWVWUHDP KRUL]RQWDOVKHDULQJWRSRJUDSK\VXUIDFHURXJKQHVV y 6ORZLQJGRZQRIDLU SDUFHOGXHWRWXUEXOHQFHVSHUSHQGLFXODUWRWKHPDLQ ZLQG GLUHFWLRQ y 6ORZ DLU SDUFHOGHFHOHUDWHIDVWHUPRYLQJ DLU SDUFHOV FROOLVLRQV DQGVRRQ LQWURGXFLQJDVKHDULQJ LQWKH ZLQG ILHOG IV/11 Coriolis force ,9&RULROLVIRUFH y 1HZWRQµVODZLVRQO\YDOLGLQDV\VWHP ZKLFKLV DW UHVWRULVLQXQLIRUPPRWLRQ FRQVWDQWYHORFLW\HJFRQVWDQW VSHHG DQG FRQVWDQW GLUHFWLRQ y (DUWK LVURWDWLQJDURXQGLWVD[LV DQGWKHUHIRUHLVDQDFFHODUDWLQJ V\VWHP Î:HKDYHWRWDNHLQWRDFFRXQWHDUWKµVURWDWLRQ LI 1HZWRQVODZ RI PRWLRQ LVDSSOLHG dv y ([DPSOH5RXQGDERXW mmrmvr=⋅ω 22 ⋅=⋅/ dt Î([WHUQDOYLHZHUVHHVDIRUFHDFWLQK JWRZDUGVWKHFHQWHU &HQWULSHGDOIRUFH Fc ω = 2/π T Î3HUVRQRQ WKHURXQGDERXWIHHOVWKHPRPHQWK RI LQHUWLD &HQWULIXJDOIRUFH * Fc KK Î&RULROLVIRUFHLVDYLUWXDOIRUFH +=* FFcc0 IV/12 Coriolis force ,9&RULROLVIRUFH FRQWLQXHG y ([DPSOH 6RXWKQRUWKPRWLRQ IV/13 Coriolis force y ([DPSOH 6RXWKQRUWKPRWLRQ FRQWLQXHG ()ϕϕ+∆ − ϕ ϕ avfv=Ω⋅2sinϕ ⋅= ⋅ cos cos → dcos ∆ϕϕd f ≡Ω⋅2 sinϕ Coriolis parameter IV/14 Coriolis force ,9&RULROLVIRUFH FRQWLQXHG y *HQHUDOGHVFULSWLRQ RI PRWLRQ DFFHOHUDWLRQ LQDURWDWLQJHDUWK V\VWHP K K dv dv KKKKK =a −2 ⋅() Ω×vr −Ω× () Ω× dt dt &RULROLVIRUFH DFFHOHUDWLRQREVHUYHG &HQWULIXJDO IRUFH IURP DIL[HGORFDWLRQ RQ HDUWK DFFHOHUDWLRQLQWKHLQHUWLDO V\VWHP GXH WRUHDOIRUFHVHJ3*)JUDYLW\ K K K =− ⋅ Ω× y &RULROLV IRUFH fvC 2 () KKK y &HQWULIXJDOIRUFHWHUPLVFRQWDLQHGLQWKHFRUUHFWLRQIRUΩ×() Ω×rr =Ω2 JUDYLW\DFFHOHUDWLRQ DQG LVQRZSDUW RI WKHPRGLILHGJUDYLW\ IRUFH VHH JHSRWHQWLDOKHLJKWGHILQLWLRQ IV/15 Coriolis force ,9&RULROLVIRUFH FRQWLQXHG K K K =− ⋅ Ω× y /HWµVORRN LQWRWKHYDULRXVWHUPVFRQWDLQHGLQWKH&RULROLVIRUFH fvC 2 () u K vv= &DOFXODWHGOLNHDGHWHUPLQDQW RIDPDWUL[ w KK iuΩ i0 u KKK K K Kx K K K ffvgkjvgkj+ =Ω×−⋅=−22cos Ω −⋅=− Ω⋅ϕ vgk −⋅= CgKK y ΩΩ⋅ϕ kwz ksin w K =Ω2sincos()vwi ⋅ϕ − ⋅ϕ ⋅ K wuv , −Ω ⋅ϕ ⋅ + 2sin()uj 2QO\KRUL]RQWDO w ≈ 0 KK FRPSRQHQW RI &RULROLV 2Ω⋅ug +Ω2cos()ukgk ⋅ϕ ⋅ − ⋅ = IRUFHLPSRUWDQW 2sinΩ⋅v ⋅ ϕ KKK ≈Ω2()viujgku ⋅ sinϕ ⋅−Ω 2 () ⋅ sinϕ ⋅− ⋅ =−Ω⋅⋅ 2 sinϕ IV/16 −g Coriolis force ,9&RULROLVIRUFH FRQWLQXHG y &RULROLV IRUFHFDQEHQRZVLPSOLILHGDVIROORZV KKK K 2sinΩ⋅ϕ vv fvf=−2 ⋅() Ω× ≈() = = f = CCH −Ω2sinϕ ⋅uu − KK KK =⋅−⋅=−× fv i fu j f() k vH 2QO\KRUL]RQWDOYHORFLW\FRPSRQHQWLPSRUWDQW &RULROLVSDUDPHWHU K u v = f ≡Ω⋅2sinϕ H v K k K KKK cab=× vH K K × K K kvH −× kvH y &RULROLV IRUFHGLUHFWVWKH ZLQGWRWKH ULJKW IURPLWV RULJLQDOGLUHFWLRQJLYHQE\ Y+ LQWKH1+ WRWKHOHIW LQ6+ IV/17 Navier-Stokes Equation ,91DYLHU6WRNHV(TXDWLRQ KK dv∂ v KKKKKKKK1 K =+∇==−∇−⋅−Ω×+()vvf pgk2() v f dt∂ t ρ F m ,,,,,,,9 Î, SUHVVXUHJUDGLHQW IRUFH Î,, JUDYLW\ IRUFH LQFOXGLQJFRUUHFWLRQIRUFHQWULIXJDO IRUFH Î,,, &RULROLV IRUFH Î,9 IULFWLRQ IRUFH K K ∂ KKK y $FFHOHUDWLRQ RIDLU SDUFHOORFDOGHULYDWLYHDQGdv v DGYHFWLRQWHUP ()vv∇ dt ∂t y ,IZHFRQVLGHU DLU DVDSHUIHFWOLTXLG K\GURG\QDPLFV WKHQIULFWLRQIRUFHLV ]HURl (XOHULDQHTXDWLRQ RI PRWLRQ y 1DYLHU6WRNHVLVWKHEDVLFHTXDWLRQ RI WKHG\QDPLFDOPHWHRURORJ\ KKK y %HFDXVH RIWKHHTXDWLRQ()vv∇ RI PRWLRQLVDGLIIHUHQWLDOHTXDWLRQ RIVHFRQG RUGHUDQG FDQQRWEHVROYHGDQDO\WLFDOO\l QXPHULFDOVROXWLRQQHHGHG IV/18 Navier-Stokes Equation ,91DYLHU6WRNHV(TXDWLRQ FRQWLQXHG KK dv∂ v KKKKKKKK1 K =+∇==−∇−⋅−Ω×+()vvf pgk2() v f ∂ ρ F dt t m y LQFDUWHVLDQFRRUGLQDWHV GX∂∂∂ X X X ∂ X ∂ S =+XYZ + + =−D DDD +ΩVLQFRV() Yϕϕ − Z + I)[ GW∂∂∂ W [ \ ∂ ]ρP ∂ [ GY∂∂∂ Y Y Y ∂ Y ∂ S =+XYZ + + =−D DDD −Ω⋅VLQ Xϕ DDDDDDDD + I)\ GW∂∂∂ W [ \ ∂ ]ρP ∂ \ GZ∂∂∂ Z Z Z ∂ Z ∂ S =+X +YZ + =−−−Ω⋅ JFRV XϕDDDDDDDD +I)] GW∂∂∂ W [ \ ∂ ]ρP ∂ ] ,,,,,, ,9 y $OOEDVLFHTXDWLRQV RI K\GURG\QDPLFVWKHUPRG\QDPLFVWKDWDUHLPSRUWDQWIRU DWPRVSKHULFG\QDPLFVDUH IV/19 Navier-Stokes Equation ,91DYLHU6WRNHV(TXDWLRQ FRQWLQXHG y %DVLFHTXDWLRQV RI K\GURG\QDPLFVWKHUPRG\QDPLFVWKDWDUHLPSRUWDQWIRU DWPRVSKHULFG\QDPLFVDUH ÎHTXDWLRQ RI PRWLRQ 1DYLHU6WRNHV LQWKUHHFRRUGLQDWHV[\] ÎFRQWLQXLW\HTXDWLRQ l PDVVFRQVHUYDWLRQ ∂ρ K K m =−∇()ρ ⋅v ∂t m ÎZDWHUYDSRUEXGJHW ÎVWODZ RIWKHUPRG\QDPLFV ÎJDVODZV LGHDOJDV3RLVVRQHTXDWLRQUHODWHGWRDGLDEDWLFSURFHVVHV y 7KHVHEDVLFODZVDUHUHTXLUHGLQQXPHULFDOPRGHOV LQDGGLWLRQWKHUHPD\EHD QHHGIRUFKHPLFDOWHUPVEXWQRWQHHGHGLQZHDWKHUSUHGLFWLRQPRGHOV IV/20 Scale analysis ,96FDOHDQDO\VLV y 6LQFHHTXDWLRQ RI PRWLRQDUHGLIILFXOWWRVROYHRQHFDQWU\WRVLPSOLI\HTXDWLRQV E\DQDO\VLV RI VFDOHV PDJQLWXGH RIRUGHURI YDULRXVWHUPV y +HUHZHFRQVLGHUPLGODWLWXGHV\QRSWLFVFDOHV/ NP&KDUDFWHULVWLF YDOXHVDUH ÎKRUL]RQWDOZLQG VSHHG8 9 PV Î9HUWLFDO ZLQG VSHHG: PV Î+HLJKW WURSRVSKHUH + NP Î3UHVVXUHYDULDELOLW\%3 K3D Î7LPH VFDOH7 /8a V K Î&RULROLVSDUDPHWHUI 8VLQK a QV VLQ a; V ÎSP NJP Î* PV Î3 K3D IV/21 Scale analysis ,96FDOHDQDO\VLV IV/22 Geostrophic approximation ,9$SSUR[LPDWLRQV y ,QPRVWDSSUR[LPDWLRQVDEDODQFH RI IRUFHVLVDVVXPHG HTXLOLEULXP VWDWHQR DFFHOHUDWLRQ HJ KK == ff∑ i 0 ,9JHRVWURSKLFDSSUR[LPDWLRQi KK += ()ffCp () 0 HHKKKK K K ⇒ −ρ −−11 ∇− Ω× =−ρ ∇− × = mHmHpv2( ) pfkv ( ) 0 K K ()fv⊥ CHH K K ()fv⊥ pHH K 1 K K y *HRVWURSKLF ZLQG FRPSRQHQW vkp=×∇⋅() gsρ ⋅ H m f IV/23 Geostrophic approximation K 1 K K ,9JHRVWURSKLFDSSUR[LPDWLRQ FRQWLQXHG vkp=×∇⋅() gsρ ⋅ H m f y *HRVWURSKLFDSSUR[LPDWLRQLVVXIILFLHQWO\YDOLGDERYHSODQHWDU\ ERXQGDU\OD\HU DERYHNPDOWLWXGH y $W ORZODWLWXGHV QHDUHTXDWRU JHRVWURSKLF ZLQG VSHHG YJV LQFUHDVHVVLQFH WKH&RULROLVSDUDPHWHU I DSSURDFKHVEXWSUHVVXUHJDUGLHQWIRUFHDOVR WHQGVWR]HUR,QJHQHUDOJHRVWURSKLFZLQGVDUHQRW ZHOOGHILQHGLQWKHWURSLFV KKK ++ = I FHQWULIXJDOIRUFH fffCpZ0 ] IV/24 Cyclostrophic wind ,9F\FORVWURSKLF ZLQG y QR &RULROLVIRUFH HTXDWRU y QRIULFWLRQ IRUFH RFHDQ y 2QO\SUHVVXUHJUDGLHQWIRUFH IS DQG FHQWULIXJDOIRUFH I= EDODQFH KK ()ff+= () 0 pZHH 1 ∂pv2 −+=0 ρ ∂ m nr y $QWLF\FORQLF DQG F\FORQLFPRWLRQVDUHDOORZHG y ([DPSOHWURSLFDOVWRUPV KXUULFDQHVW\SKRRQV Î UaNP Î IRUP PDLQO\QHDU ODWLWXGHV Î LQPLGGOHODWLWXGHVWKH\GHYHORSLQWRZHDNHUF\FORQHV PXVWDFFRXQWIRU JHVWURSKLF ZLQG FRPSRQHQW KHUH IV/25 Ageostrophic wind ,9F\FORVWURSKLF ZLQG FRQWLQXHG y ([DPSOHWRUQDGRHV Î UaP ,9DJHRVWURSKLF ZLQG IULFWLRQIRUFH y B GHFUHDVHVZLWKDOWLWXGH y B DW VXUIDFHLVDIXQFWLRQ RI URXJKQHVV OD\HUVWDELOLW\DQG JHRJUDSKLFDOODWLWXGH y *OREDODYHUDJHQHDUVXUIDFHB IV/26 ageostrophic wind ,9DJHRVWURSKLF ZLQG FRQWLQXHG y VXUIDFHIULFWLRQWHQGWRGHFUHDVHWKH SUHVVXUHJDUGLHQWV ILOOORZV DQG HPSW\ KLJKV y /RZVDUHILOOHGIDVWHU RQODQG WKDQ RQ RFHDQ ODQG LVURXJKHUWKDQRFHDQ y /RZVDUHSUHIHUDEO\IRUPHGRYHURFHDQ y 7URSLFDOVWRUPVGHYHORSRQO\RYHURFHDQ DQG TXLFNO\GLVVLSDWHRYHU ODQG y &RQWLQXLW\HTXDWLRQUHTXLUHVWKDWLQ /RZV DLU LVULVLQJ DQG VLQNLQJLQ+LJKV IV/27 ageostrophic wind ,9DJHRVWURSKLF ZLQG FRQWLQXHG y 6XUIDFH/RZ Ö ULVLQJ DLU PDVVÖ SUHFLSLWDWLRQ DQG FRQGHQVDWLRQ y 6XUIDFHKLJKÖ VLQNLQJ DLU PDVVÖ GLVVROYLQJFORXGVVWDELOLVLQJOD\HULQJ LQYHUVLRQ IV/28 Vertical motion ,99HUWLFDOPRWLRQ KK ()ff+= () 0 gpVV 1 ∂p ⇒−g − =0 y OHDGV WRK\GURVWDWLFHTXDWLRQ ρ ∂ m z ∂p ⇒=−⋅ρ g ∂z m IV/29 ,9$WPRVSKHULFFLUFXODWLRQ 2QH FHOOFLUFXODWLRQ E\+DGOH\ 7KUHHFHOOFLUFXODWLRQ E\%HUJHURQ IV/30 ,9$WPRVSKHULFFLUFXODWLRQ IV/31 ,9$WPRVSKHULFFLUFXODWLRQ $KUHQV 7XUFR IV/32.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us