Bovine Abortions Revisited—Enhancing Abortion Diagnostics by 16S Rdna Amplicon Sequencing and Fluorescence in Situ Hybridization

Bovine Abortions Revisited—Enhancing Abortion Diagnostics by 16S Rdna Amplicon Sequencing and Fluorescence in Situ Hybridization

Downloaded from orbit.dtu.dk on: Sep 28, 2021 Bovine Abortions Revisited—Enhancing Abortion Diagnostics by 16S rDNA Amplicon Sequencing and Fluorescence in situ Hybridization Wolf-Jäckel, Godelind Alma; Strube, Mikael Lenz; Schou, Kirstine Klitgaard; Schnee, Christiane; Agerholm, Jørgen S.; Jensen, Tim Kåre Published in: Frontiers in Veterinary Science Link to article, DOI: 10.3389/fvets.2021.623666 Publication date: 2021 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Wolf-Jäckel, G. A., Strube, M. L., Schou, K. K., Schnee, C., Agerholm, J. S., & Jensen, T. K. (2021). Bovine Abortions Revisited—Enhancing Abortion Diagnostics by 16S rDNA Amplicon Sequencing and Fluorescence in situ Hybridization. Frontiers in Veterinary Science, 8, [623666]. https://doi.org/10.3389/fvets.2021.623666 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ORIGINAL RESEARCH published: 23 February 2021 doi: 10.3389/fvets.2021.623666 Bovine Abortions Revisited—Enhancing Abortion Diagnostics by 16S rDNA Amplicon Sequencing and Fluorescence in situ Hybridization Godelind Alma Wolf-Jäckel 1*†, Mikael Lenz Strube 2, Kirstine Klitgaard Schou 1, Christiane Schnee 3, Jørgen S. Agerholm 4 and Tim Kåre Jensen 1 1 National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark, 2 Department of Biotechnology Edited by: and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, 3 Institute of Molecular Pathogenesis, Nick Wheelhouse, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany, 4 Section for Veterinary Reproduction Edinburgh Napier University, and Obstetrics, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of United Kingdom Copenhagen, Taastrup, Denmark Reviewed by: Nicole Borel, Abortion in cattle causes significant economic losses for cattle farmers worldwide. University of Zurich, Switzerland Fabio S. Lima, The diversity of abortifacients makes abortion diagnostics a complex and challenging University of California, Davis, discipline that additionally is restrained by time and economy. Microbial culture has United States traditionally been an important method for the identification of bacterial and mycotic *Correspondence: abortifacients. However, it comes with the inherent bias of favoring the easy-to-culture Godelind Alma Wolf-Jäckel [email protected] species, e.g., those that do not require cell culture, pre-enrichment, a variety of selective growth media, or different oxygen levels for in vitro growth. Molecular methods such as †Present address: Godelind Alma Wolf-Jäckel, polymerase chain reaction (PCR) and next-generation sequencing have been established Section of Pathobiological Sciences, as alternatives to traditional microbial culturing methods in several diagnostic fields Department of Veterinary and Animal Sciences, University of Copenhagen, including abortion diagnostics. Fluorescence in situ hybridization (FISH), a bridging Frederiksberg, Denmark microscopy technique that combines molecular accuracy with culture independence, and spatial resolution of the pathogen-lesion relation, is also gaining influence in Specialty section: This article was submitted to several diagnostic fields. In this study, real-time quantitative PCR (qPCR), 16S rDNA Animal Reproduction - amplicon sequencing, and FISH were applied separately and in combination in order Theriogenology, to (i) identify potentially abortifacient bacteria without the bias of culturability, (ii) increase a section of the journal Frontiers in Veterinary Science the diagnostic rate using combined molecular methods, (iii) investigate the presence of Received: 30 October 2020 the difficult-to-culture zoonotic agents Coxiella burnetii, Chlamydia spp., and Leptospira Accepted: 21 January 2021 spp. in bovine abortions in Denmark. Tissues from 162 aborted or stillborn bovine fetuses Published: 23 February 2021 and placentas submitted for routine diagnostics were screened for pathogenic bacteria Citation: Wolf-Jäckel GA, Strube ML, using 16S rDNA amplicon sequencing. Lesion association of fungal elements, as well Schou KK, Schnee C, Agerholm JS as of selection of bacterial abortifacients, was assessed using specific FISH assays. and Jensen TK (2021) Bovine The presence of Chlamydia spp. and chlamydia-like organisms was assessed using Abortions Revisited—Enhancing Abortion Diagnostics by 16S rDNA qPCR. The study focused on bacterial and fungal abortifacients, because Danish cattle Amplicon Sequencing and is free from most viral abortifacients. The 16S rDNA amplicon sequencing–guided FISH Fluorescence in situ Hybridization. Front. Vet. Sci. 8:623666. approach was suitable for enhancing abortion diagnostics, i.e., the diagnostic rate for doi: 10.3389/fvets.2021.623666 cases with tissue lesions (n = 115) was increased from 46 to 53% when compared Frontiers in Veterinary Science | www.frontiersin.org 1 February 2021 | Volume 8 | Article 623666 Wolf-Jäckel et al. Bovine Abortion Diagnostics NGS FISH to routine diagnostic methods. Identification of Bacillus licheniformis, Escherichia coli, and Trueperella pyogenes accounted for the majority of additional cases with an established etiology. No evidence for emerging or epizootic bacterial pathogens was found. The difficult-to-culture abortifacients were either not detected or not identified as abortifacients. Keywords: Chlamydiaceae, culture-independent, chlamydia-like organisms (CLO), deep sequencing, diagnostics, fluorescence in situ hybridization (FISH), lesion association, zoonosis INTRODUCTION zoonotic bacteria Chlamydia spp., C. burnetii, and Leptospira spp. PCR, sequencing, and FISH have lately been applied individually Abortion in cattle causes significant economic losses for farmers for the detection of these agents in bovine abortions (11, 13, worldwide. Bovine abortion diagnostics is a complex, expensive, 14). Denmark is in the fortunate position of being free from and time-consuming field, which inter alia is due to the variety of many important abortigenic pathogens, especially viruses. For abortifacients including bacteria, protozoa, viruses, and fungi. example, bovine herpesvirus type 1 has been eradicated, and Microbial culture continues to be an important diagnostic eradication of bovine viral diarrhea virus (BVDV) is almost tool in bovine abortion diagnostics (1, 2). However, because of complete (15). Further, Campylobacter fetus subsp. venerealis the time-consuming nature of the method, its costliness, and and Tritrichomonas foetus are not present anymore, and bovine inherent culturability bias, molecular, culture-independent brucellosis was eradicated with the last case diagnosed in 1962. methods are gaining importance for the detection and Chlamydia spp. and Leptospira spp. have never been diagnosed identification of pathogens in veterinary diagnostics including as cause of bovine abortion in Denmark; however, the routine bovine abortion diagnostics (3, 4). DNA and RNA recovery methods included in the national surveillance program neither methods, such as polymerase chain reaction (PCR) and next- specifically target these agents nor C. burnetii, and the current generation sequencing, come with the advantages of detecting prevalence of these infections is therefore uncertain. pathogens based on their nucleic acid sequences and thereby The diagnostic rate of most bovine abortion studies is allowing for an efficient, highly sensitive, and specific screening generally unsatisfyingly low and seldom reaches 50% (7, for a variety of pathogens including emerging, opportunistic, 16–19). Applying molecular high-throughput and in situ and “difficult-to-culture” species (5, 6). detection methods could enhance the diagnostic rate, e.g., by In bovine abortion diagnostics, the establishment of a detecting opportunistic pathogens that might be missed by causal relationship between the detected abortifacient and conventional methods. placental or fetal lesions is crucial for making an etiologic Here, we evaluate the diagnostic benefit of applying real- diagnosis, especially when facultative abortigenic pathogens time quantitative PCR (qPCR), 16S rDNA amplicon sequencing, such as Coxiella burnetii and ubiquitous pathogens such as and FISH separately and in combination in bovine abortion Escherichia coli are involved (7). Moreover, abortion material diagnostics. The aims of the study were to (i) identify potentially is often considered as compromised because of autolysis abortifacient bacteria without the bias of culturability, (ii) and putrefaction, which further underlines the importance of increase the diagnostic rate using combined molecular methods, investigating the pathogen–lesion association. Fluorescence in (iii) investigate the presence of the difficult-to-culture

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us