Introduction to Quantum Materials Leon Balents, KITP

Introduction to Quantum Materials Leon Balents, KITP

Introduction to Quantum Materials Leon Balents, KITP QS3 School, June 11, 2018 Quantum Materials • What are they? Materials where electrons are doing interesting quantum things • The plan: • Lecture 1: Concepts in Quantum Materials • Lecture 2: Survey of actual materials Themes of modern QMs • Order • Topology • Entanglement • Correlations • Dynamics Order: symmetry • Symmetry: a way to organize matter • A symmetry is some operation that leaves a system (i.e. a material) invariant (unchanged • In physics, we usually mean it leaves the Hamiltonian invariant U<latexit sha1_base64="z44s+OqrR28LnNVtYut8w3Yl5bw=">AAAB+nicbVBNS8NAEN34WetXqkcvi0XwVBIR9CIUvfRYwbSFNpbNZpIu3WzC7kYptT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMCzLOlHacb2tldW19Y7O0Vd7e2d3btysHLZXmkoJHU57KTkAUcCbA00xz6GQSSBJwaAfDm6nffgCpWCru9CgDPyGxYBGjRBupb1e8+15I4hgkbmAPX+FG3646NWcGvEzcglRRgWbf/uqFKc0TEJpyolTXdTLtj4nUjHKYlHu5gozQIYmha6ggCSh/PDt9gk+MEuIolaaExjP198SYJEqNksB0JkQP1KI3Ff/zurmOLv0xE1muQdD5oijnWKd4mgMOmQSq+cgQQiUzt2I6IJJQbdIqmxDcxZeXSeus5jo19/a8Wr8u4iihI3SMTpGLLlAdNVATeYiiR/SMXtGb9WS9WO/Wx7x1xSpmDtEfWJ8/44aScA==</latexit> †HU = H Order and symmetry • Why symmetry? • It is persistent: it only changes through a phase transition • It has numerous implications: • Quantum numbers and degeneracies • Conservation laws • Brings powerful mathematics of group theory • The set of all symmetries of a system form its symmetry group. Materials with different symmetry groups are in different phases Ising model • A canonical example z z x z z H = J σ σ hx σ σ<latexit sha1_base64="qkGFhco5brjSZMvHUYBkOShCXm8=">AAACF3icbVDLSsNAFJ34rPUVdSnIYBHcWBIRdFl047KCfUATy2Q6SYfOI8xMlBq68yf8Bbe6dyduXbr1S5w+BG09cOFwzr3ce0+UMqqN5306c/MLi0vLhZXi6tr6xqa7tV3XMlOY1LBkUjUjpAmjgtQMNYw0U0UQjxhpRL2Lod+4JUpTKa5NPyUhR4mgMcXIWKnt7gWaJhzd3MNA0aRrkFLyDh79qG235JW9EeAs8SekBCaott2voCNxxokwmCGtW76XmjBHylDMyKAYZJqkCPdQQlqWCsSJDvPRHwN4YJUOjKWyJQwcqb8ncsS17vPIdnJkunraG4r/ehGf2mziszCnIs0MEXi8OM4YNBIOQ4Idqgg2rG8Jwora2yHuIoWwsVEWbSj+dASzpH5c9r2yf3VSqpxP4imAXbAPDoEPTkEFXIIqqAEMHsATeAYvzqPz6rw57+PWOWcyswP+wPn4BguHoBk=</latexit> σ − i j − i ! ij i Z2 symmetry <latexit sha1_base64="fYBqiH2eniqeMADXi+eIXUyZPnE=">AAACRXicbZDLSgMxFIYzXmu9VV26CRbBTcuMCLoRim6KuKhgL9CpQyZN27RJZkgy0jr0pXwJX0GXdu9O3Go6raitBwIf/zmH/+T3Q0aVtu0Xa2FxaXllNbWWXt/Y3NrO7OxWVBBJTMo4YIGs+UgRRgUpa6oZqYWSIO4zUvV7l+N+9Z5IRQNxqwchaXDUFrRFMdJG8jLXRXgOc1euirgXuwyJNiOQdl2Z0BC6irY58ujdwzd2DeZgx+vDZIn+jPS9TNbO20nBeXCmkAXTKnmZkdsMcMSJ0JghpeqOHepGjKSm2Lin3UiREOEeapO6QYE4UY04+fUQHhqlCVuBNE9omKi/N2LElRpw30xypDtqtjcW/+35fMZZt84aMRVhpInAE+NWxKAO4DhS2KSSYM0GBhCW1NwOcQdJhLUJPm1CcWYjmIfKcd6x887NSbZwMY0nBfbBATgCDjgFBVAEJVAGGDyCZ/AKRtaT9Wa9Wx+T0QVrurMH/pT1+QVoMbHv</latexit> Xh i X kT/J PM σz =0 <latexit sha1_base64="qzim7GBagBk1qh+ULk66r2UEJfU=">AAACFnicbVC7SgNBFL3rM8ZX1FKEwSBYhV0RtBGCNpYRzAOy6zI7mWyGzMwuM7NCXFL5E/6CrfZ2Ymtr65c4eRSaeODC4Zx7ufeeKOVMG9f9chYWl5ZXVgtrxfWNza3t0s5uQyeZIrROEp6oVoQ15UzSumGG01aqKBYRp82ofzXym/dUaZbIWzNIaSBwLFmXEWysFJYOfI5lzCnyNYsFDtndg68mygVyw1LZrbhjoHniTUkZpqiFpW+/k5BMUGkIx1q3PTc1QY6VYYTTYdHPNE0x6eOYti2VWFAd5OM3hujIKh3UTZQtadBY/T2RY6H1QES2U2DT07PeSPzXi8TMZtM9D3Im08xQSSaLuxlHJkGjjFCHKUoMH1iCiWL2dkR6WGFibJJFG4o3G8E8aZxUPLfi3ZyWq5fTeAqwD4dwDB6cQRWuoQZ1IPAIz/ACr86T8+a8Ox+T1gVnOrMHf+B8/gAWKp7x</latexit> i z = σ h i <latexit sha1_base64="3OR9pNEstHxh2r/d7Mf5mcR+AwE=">AAACGHicbVC7SgNBFJ31GeMramnhYBCswq4I2ghBG8sI5gHZdZmd3GyGzMwuM7NCXFL6E/6CrfZ2Ymtn65c4eRSaeODC4Zx7ufeeKOVMG9f9chYWl5ZXVgtrxfWNza3t0s5uQyeZolCnCU9UKyIaOJNQN8xwaKUKiIg4NKP+1chv3oPSLJG3ZpBCIEgsWZdRYqwUlg78VLMLnxMZc8C+ZrEgIbt78NVECUtlt+KOgeeJNyVlNEUtLH37nYRmAqShnGjd9tzUBDlRhlEOw6KfaUgJ7ZMY2pZKIkAH+fiRIT6ySgd3E2VLGjxWf0/kRGg9EJHtFMT09Kw3Ev/1IjGz2XTPg5zJNDMg6WRxN+PYJHiUEu4wBdTwgSWEKmZvx7RHFKHGZlm0oXizEcyTxknFcyvezWm5ejmNp4D20SE6Rh46Q1V0jWqojih6RM/oBb06T86b8+58TFoXnOnMHvoD5/MHlqSgXQ==</latexit> i symmetric h i thermal FM “order phase symmetry broken transition parameter” σz = m =0 h<latexit sha1_base64="S5uWgTYSXVLTBuxJzCl6jrxQXNs=">AAACIXicbVDLSgNBEJyNrxhfqx69DAYhp7Argl6EoBePEcwDsjHMTnqTITOz68ysEEN+wZ/wF7zq3Zt4E29+iZNkD5pY0FBUddPdFSacaeN5n05uaXlldS2/XtjY3NrecXf36jpOFYUajXmsmiHRwJmEmmGGQzNRQETIoREOLid+4x6UZrG8McME2oL0JIsYJcZKHbcUcCJ7HHCgWU+QDrt9CNRMOcdBIrDAgYQ77HXcolf2psCLxM9IEWWodtzvoBvTVIA0lBOtW76XmPaIKMMoh3EhSDUkhA5ID1qWSiJAt0fTj8b4yCpdHMXKljR4qv6eGBGh9VCEtlMQ09fz3kT81wvF3GYTnbVHTCapAUlni6OUYxPjSVy4yxRQw4eWEKqYvR3TPlGEGhtqwYbiz0ewSOrHZd8r+9cnxcpFFk8eHaBDVEI+OkUVdIWqqIYoekTP6AW9Ok/Om/PufMxac042s4/+wPn6AfslowU=</latexit> i i ± 6 QCP hx/J Symmetries in QMs • Basic symmetries of our world: • space-time (Lorentz/Poincare) symmetry • spatial isotropy and translations • time reversal • Charge/particle number conservation • Approximate symmetries (sometimes) • spin-rotation • various internal quantum numbers • These things are broken down to varying degrees in different QMs RuCl3 LiNaSO4 Tourmaline Proustite Li2ZrF6 Coquimbite Portlandite Fluocerite-(La) (#172) P63 (#173) P6 (#174) P6/m (#175) P63/m (#176) P622 (#177) P6122 (#178) P6522 (#179) Cystallography tetracosakis(µ2-Methoxo)- catena-[2,2'-(biphenyl-4,4'- dodecakis(µ2-proline)-dodeca- iron(iii) dodecaperchlorate AgF )(H2O)4 •NephCrystaleline structure:LiNaCO3 diyldiimino)di 230benzene crystallographic-1,3,5-triol] Fluorapatite space groups3 LaBTB m2 (#187) P6c2 (#188) P62m (#189) P62c (#190) P6/mmm (#191)P6/mcc (#192) P63/mcm (#193) P63/mmc (#194) • Classifies the arrangements of atoms (which break the symmetries of free space) BaTi(Si O ) Na O KCaF(CO3) • Wallpaper3 9 groups2 2 inSrBe 2d3O4 (c.f. 2dAlB2 materials)Beryl ZrI3 Graphite 3 (#203) Im3 (#204) Pa3 (#205) Ia3 (#206) P432 (#207) P4232 (#208) F432 (#209) F4132 (#210) I432 (#211) • Basic input to many things • Phonons, elasticity, band structure... Dodecasil Na1-x•WO3 LOADSPyrite of extremelyYttria BIF useful-9-Cu stuffBe3 Pon2 BilbaoPCN-20 Te(OH)6 NiHg c (#219) I43d (#220)crystallographicPm3m (#221) Pn3n (#22 server...2) Pm3n (#223) Pn3m (#224) Fm3m (#225) Fm3c (#226) Fd3m (#227) • Structural phase transition = change of space group. Katoite Mn3B7O13I hydrogarnet ZIF-71-RHO Co-Squarate V6SnSi (NH4)[(Mo12O36)(AsO4)Mo(MoO)] NaCl LTA Spinel J B Goodenough tilting of the CuO, octahedra-which aretetragonal 3. Electron correlatlon energies (c/a =- 1)"along a [ 1lo] axis to transform the structure fromthe tetragonal symmetry of figure l(a)to the Substitution of a larger Ba2+ or Sr2+ ion for La3+ in orthorhombic symmetry of figure l(b) below IT; = 530 K La,CuO, not only expands the mean A-0 bond length, [4]. Bending of the Cu-0-Cu bond angle from 180" butalso oxidises the CuO,planes; removal of anti- Chemical and structural relationships in high-T, materials permits a matching of the sizes of the basal-plane lattice bondingelectrons from theplane shortens the Cu-0 parameters of the two intergrowth layers without com- bondlength. Consequently the tolerance factor t pression of the Cu-0 bond length. increasesLa,CuO, with and y Nd,CuO,;in the system the former La,-,Sr,CuO,, is a parent com-so I; plane Cu-0 bonds whereas a reduction would add anti- decreasespound forwith p-type increasing superconductivity, y in thephase the latterdiagram for n-typeof bonding c~,*~-,,~electrons and thus expand the in-plane figuresuperconductivity. 3. Moreover, as both t and the oxidation state of Cu-0 bonds against the internal compressive force. As 2.4. The T'-tetragonal structure the CuO,Stoichiometric planes increases, La,CuO, the drivinghasthe tetragonal force(T) for insert- a result, La,CuO, is readily oxidised, but attempts to structure of figure l(a) at temperatures T > IT;; aco- reduce it have failed. A t < 1 at high temperatures allows theinsertion of ingoperative excess oxygen tilting decreases,of the CuO, and octahedra stoichiometric at lower oxygen tem- excess interstitial oxygen into the La202+dlayers. concentrationsperatures (T are< IT;) readilyyields the achieved orthorhombic in air (0) in structurethe com- However, a Coulomb repulsion between the interstitial positionalof figure range l(b) [3,0.07 41. < The y < phase 0.15 changewhereas, at for T =x IT;< 0.07,is a 2.2. Oxidation and c-axis oxide ions forces a strong relaxation of the it istypical necessary second-order, to annealsoft-mode in transition.N, to avoidIn insertion both of Even with electronordering, a t < 1 occurs at tem- c-axis oxygen neighbouring an interstitial, so onlya excessstructures, oxygen. (Cu0,)'- Annealing planes in (or 0, sheets allows Textension < IT;) alternate of the peratures high enough (T > 400 "C) for the insertion of small concentrationcan be accommodated before a rangewith of twooxygen (Lao)' stoichiometry layershaving tothe yrocksalt = 0.27;structure. for y 0.27, > interstitial oxygen between adjacent La0 planes;the Thisconfiguration has two immediate consequences phase transition occurs within the La20,+d layers. The a high oxygen pressureappears to be necessary to interstitial oxygen atoms occupy the sites coordinated that are common to all the p-type copper oxide super- layer transforms from a rocksalt to a fluorite configu- prevent oxygen loss [14,151. Oxygen-deficient by four La andfour c-axis oxygen A similar insertion conductors: (i) the layers are alternately charged posi- [S]. ration by adisplacement of the c-axis oxygen to the La, -,S~,CUO,-~has oxygen vacancies at the c-axis of interstitial oxygen occurs in La,NiO, The inter- tively and negatively, which creates an interlayer [7]. interstitial sites; in the absence of any c-axis oxygen, the sites. nal electric field parallel to the c axis stabilises an inter- internal electric field that shifts the energies within one oxygen is coordinated by only four Ln3+ ions (figure

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    51 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us