Deciphering Molecular Mechanisms of Adverse Reactions of Drugs

Deciphering Molecular Mechanisms of Adverse Reactions of Drugs

UNIVERSITY OF CALIFORNIA, SAN DIEGO Deciphering Molecular Mechanisms of Adverse Reactions of Drugs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Yu-Chen Chen Committee in charge: Professor Ruben Abagyan, Chair Professor Grace M. Kuo, Co-Chair Professor Nuno F. Bandeira Professor Sanjoy Dasgupta Professor Lucila Ohno-Machado 2014 Copyright Yu-Chen Chen, 2014 All rights reserved. Signature Page The Dissertation of Yu-Chen Chen is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Co-Chair _____________________________________________________________________ Chair University of California, San Diego 2014 iii TABLE OF CONTENTS Table of Contents Signature Page ............................................................................................................... iii Table of Contents .......................................................................................................... iv List of Figures ................................................................................................................ ix List of Tables ................................................................................................................ xii Acknowledgements ...................................................................................................... xv Vita ............................................................................................................................ xviii Abstract of the Dissertation ........................................................................................ xxii Chapter 1 Docking to Multiple Pockets or Ligand Fields for Screening, Activity Prediction and Scaffold Hopping ................................................................................... 1 1.1 Introduction .................................................................................................. 2 1.2 Scaffold hopping benchmark preparation .................................................... 4 1.3 Protein Target Selection ............................................................................... 6 1.4 3D Atomic Property Field Models, docking and scoring ............................. 7 1.5 Internal Coordinates Mechanics Grid Docking ............................................ 8 1.6 Evaluating the Prediction Performance by Normalized Square Root ROC AUC .................................................................................................................. 10 1.7 Generation of high quality superimposed protein pockets ......................... 11 1.8 Analysis of the benchmark ......................................................................... 12 iv 1.9 Prediction of ligand binding geometry by APF self-docking ..................... 13 1.10 Comparison of molecular recognition between APF and molecular docking ............................................................................................................. 14 1.11 Conclusion ................................................................................................ 17 1.12 Acknowledgements .................................................................................. 17 Chapter 2 Compound activity prediction using models of binding pockets or ligand properties in 3D ............................................................................................................ 28 2.1 Introduction ................................................................................................ 29 2.2 The Pocketome encyclopedia ..................................................................... 31 2.3 Computational models of compound activity ............................................. 33 2.4 Compound sets for model benchmarking ................................................... 34 2.5 Pocket-based models .................................................................................. 38 2.6 Models based on 3D ligand property fields ................................................ 41 2.7 Advantages and limitations of the pocket-based and ligand-based approaches ........................................................................................................ 44 2.8 Hybrid models ............................................................................................ 45 2.9 Acknowledgements .................................................................................... 46 Chapter 3 Docking, screening and selectivity prediction for small molecule nuclear receptor modulators ...................................................................................................... 55 3.1 Introduction ................................................................................................ 55 v 3.2 Chemicals Targeting Nuclear Receptors .................................................... 58 3.2.1 Chemical Specificity: From Highly Specific to Highly Promiscuous ......................................................................................... 58 3.2.2 Agonists, Antagonists, SNuRMs ................................................. 60 3.2.3 Analysis of Cross-Reactivity ....................................................... 61 3.3 Nuclear Receptor Ligand Binding Domains .............................................. 63 3.3.1 Structural coverage ...................................................................... 63 3.3.2 Structural Basis of Agonism and Antagonism ............................ 64 3.4 Computational Prediction of Nuclear Receptor Modulators ...................... 66 3.4.1 Improving the Docking and Scoring Accuracy to Ligand Binding Domains ................................................................................................ 66 3.4.2 Docking to Pockets Obtained from Multiple Co-crystal Structures .............................................................................................................. 67 3.4.3 Docking and Screening Against a Single Crystal Structure ........ 71 3.4.4 Ligand-derived Atom Property Fields from Co-Crystal structures as Activity Predictors ........................................................................... 73 3.4.5 Prediction of Ligand Selectivity and Polypharmacology ............ 76 3.5 Acknowledgements .................................................................................... 79 Chapter 4 Millions of Preventable Deaths: Early Alerts about Serious Side Effects ... 88 4.1 Introduction ................................................................................................ 89 vi 4.2 Data processing .......................................................................................... 90 4.3 Estimating risk signal for adverse drug reactions ....................................... 91 4.4 Early, relevant, and stronger made signal for adverse drug reactions ........ 95 4.5 Widely used crazy pills for anti-malaria over 20 years could be stopped early .................................................................................................................. 98 4.6 A dark mythology in the estrogen-containing contraception ..................... 99 4.7 Balance between benefits and risks with statin use .................................. 101 4.8 Walking near dead with popular sleeping pills, zolpidem ....................... 103 4.9 Acknowledgements .................................................................................. 105 Chapter 5 Large-scale Drug Polypharmacological Target Profiling - Deciphering Drug Associated Adverse Reactions ................................................................................... 116 5.1 Introduction .............................................................................................. 117 5.2 Chemical models based on 2D fingerprint ............................................... 119 5.3 Atomic Property Field Models based on 3D crystallographic ligands ..... 120 5.4 APF score normalization for cross-model comparison ............................ 122 5.5 Optimized APF model with distance-dependent clusters and sub-cluster selection .......................................................................................................... 122 5.6 Drug polypharmacological target profiling .............................................. 124 5.7 Fibroblast growth factor receptor 2 as a potential therapeutic target of raloxifene for treating osteoporosis ................................................................ 126 vii 5.8 Raloxifene-induced ischemic stroke and blood clotting caused by anti- target activity from thrombin .......................................................................... 128 5.9 Conclusion ................................................................................................ 129 5.10 Acknowledgements ................................................................................ 130 References .................................................................................................................. 172 viii LIST OF FIGURES List of Figures Figure 1.1 The flowchart of APF cloud generation. .................................................... 22 Figure 1.2 The outline of the structural

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    213 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us