Hydraulic Conductivity and Porosity Heterogeneity Controls on Environmental Performance Metrics: Implications in Probabilistic Risk Analysis

Hydraulic Conductivity and Porosity Heterogeneity Controls on Environmental Performance Metrics: Implications in Probabilistic Risk Analysis

Advances in Water Resources 127 (2019) 1–12 Contents lists available at ScienceDirect Advances in Water Resources journal homepage: www.elsevier.com/locate/advwatres Hydraulic conductivity and porosity heterogeneity controls on environmental performance metrics: Implications in probabilistic risk analysis Arianna Libera a,∗, Christopher V. Henri b, Felipe P.J. de Barros a a Sonny Astani Dept. of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA b Dept. of Land, Air and Water Resources, University of California, Davis, CA, USA a b s t r a c t Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity ( K ) and, to a lesser degree, the porosity ( ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs Monte Carlo simulations to investigate the coupled effect of − spatial variability on the transport behavior (and uncertainty) of conservative and reactive plumes within a 3D aquifer domain. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological properties, and compare the computational results from the joint − heterogeneous system with the results originating from generally adopted constant conditions. In our study, the spatially variable − fields are positively correlated. We statistically analyze key Environmental Performance Metrics: first arrival times and peak mass fluxes for non-reactive species and increased lifetime cancer risk for reactive chlorinated solvents. The conservative transport simulations show that considering coupled − fields decreases the plume dispersion, increases both the first arrival times of solutes and the peak mass fluxes at the observation planes. A positive correlation between aquifer connectivity and peak mass fluxes is identified for both homogeneous and heterogeneous . Our conservative transport results indicate that the relevance of variability can depend on the metric of interest, the control plane-source distance as well as the level of heterogeneity of the conductivity field. The analysis on reactive transport shows that variability only slightly affects the mean increased lifetime cancer risk at the control planes but leads to a considerable reduction of the cancer risk uncertainty. We also see that the sensitivity of cancer risk towards heterogeneity can be influenced by the level of variability of the conductivity field, the source-to-control plane distance, but is not affected by the manner in which the contaminant concentration is computed. 1. Introduction between 0.1 and 0.55 ( Atkins and McBride, 1992; Freeze and Cherry, 1979; Hu et al., 2009 ). It is well established that heterogeneities in natural porous forma- Because of the limited availability of K and measurements, it is dif- tions largely control subsurface groundwater flow and contaminant ficult to establish a clear correlation between the two geological prop- transport. These heterogeneities are mainly manifested through the hy- erties. However, in specific formations, a level of correlation is likely draulic conductivity ( K ) and, to a lesser degree, the porosity ( ). The to be present ( Hassan et al., 1998 ). The literature presents different influence of the heterogeneous K -field on flow and solute transport studies exploring the relationship between K and . Archie (1950) and processes has been widely studied (see Rubin, 2003 , and references Doyen (1988) found positive correlation between the variables. Addi- therein), whereas less attention is dedicated to the effect of heteroge- tionally, different authors investigating the estimation of K from and neous . Hydraulic conductivity is commonly modeled as a random other measurable parameters (e.g. grain size, pore surface area, pore di- space function (RSF) in the stochastic hydrogeology community because mension) established positive correlation between K and for different of its erratic spatial variability and the large uncertainty associated with types of soil (e.g., Aimrun et al., 2004 ; Fallico, 2014; Franzmeier, 1991; incomplete site characterization ( Dagan, 1986; Gelhar, 1986 ). vari- Nelson et al., 1994; Panda and Lake, 1994; Riva et al., 2014 ; Scholz et al., ability is commonly regarded as a secondary factor when compared to 2012) . Among them, Nelson et al. (1994) analyzed different models to K heterogeneity. Indeed, most studies in the field of stochastic hydroge- predict permeability in sedimentary rocks and concluded that, in most ology assume that aquifers are characterized by spatially heterogeneous cases, the permeability is related to a power of and to the square of K and homogeneous . This is partially justified because K can vary a measure of surface area or a characteristic length. It is typically as- in space by 3–4 orders of magnitude within small distances while the sumed that K and are positively correlated in unconsolidated aquifers range of variability of in unconsolidated granular aquifers is generally ( Hu et al., 2009 ), however some studies observed negative correlation ∗ Corresponding author. E-mail address: [email protected] (A. Libera). https://doi.org/10.1016/j.advwatres.2019.03.002 Received 6 November 2018; Received in revised form 8 February 2019; Accepted 7 March 2019 Available online 8 March 2019 0309-1708/© 2019 Elsevier Ltd. All rights reserved. A. Libera, C.V. Henri and F.P.J. de Barros Advances in Water Resources 127 (2019) 1–12 between the two properties under specific packing arrangements and this joint heterogeneity on the flow connectivity structure of the aquifer? grain size distributions ( Morin, 2006 ). How are the effects of heterogeneity propagated to decision making met- Only a small number of studies investigated the effects of spa- rics such as human health risk? tially variable fields on transport predictions. Among them, The paper is structured as follows. We present the problem under in- Warren et al. (1964) did not consider a correlation between K and and vestigation in Section 2 . In Section 3 , we illustrate the methodology em- concluded that the impact of variations on macroscopic dispersion is ployed in our study and provide details on the computational implemen- minor with respect to the effect of K variability. Lin (1977) analyzed tation. Next, Section 4 is devoted to the analysis of the results for conser- various porosity functions to represent spatial variability in porous vative tracers ( Section 4.1 ) and reactive contaminants ( Section 4.2 ). We media and indicated that the solute concentration predictions are finally summarize our study and outline the key findings in Section 5 . within 15% of the concentration resulting from an average when a linear or slightly curved equation that expresses porosity as a function 2. Problem statement of the spatial coordinate, is employed. The author pointed out that the discrepancies of solute concentrations become very substantial as In this work we consider a contaminated, fully saturated 3D het- the deviation of the porosity function from linearity increases. A few erogeneous aquifer whose Cartesian coordinate system is indicated numerical modeling studies (e.g., Hassan, 2001; Hassan et al., 1998; by x = ( , , ) . We are interested in understanding the impact of Hu et al., 2009 ) showed that the consideration of correlated hetero- heterogeneity, stemming from both K and , on a series of EPMs geneous K and fields significantly impacts contaminant transport ( de Barros et al., 2012 ). for two-dimensional domains. Hassan et al. (1998) indicated that a Let Ω denote a generic EPM. For example, Ω can represent solute ar- positive correlation between and K decreases dispersion whereas a rival times or solute peak concentrations at an environmentally sensitive negative correlation enhances plume spreading, particularly along the location. If the contaminant is toxic, then Ω can denote, for instance, an longitudinal direction. Hassan et al. (1998) also considered reactive adverse health effect. Due to incomplete characterization of the subsur- transport and indicated that reaction rates impact the relative impor- face, hydrogeological properties such as K and are modeled as spatially tance of variability on concentration estimation, which appears to random. As a consequence, the quantity Ω is subject to uncertainty and be amplified in the presence of slow reactions. Along the same line of quantified through its statistical moments, such as its mean ⟨Ω⟩ (where work, Hassan (2001) highlighted that spatial variability, correlated 2 , the angled brackets denote ensemble expectation), its variance Ω and to heterogeneous K , impacts the longitudinal velocity covariance as its probability density function (PDF) p ( Ω) or cumulative density func- well as its cross covariance with the head and the log-conductivity tion (CDF) P ( Ω). ( Y ≡ ln [ K ]) fields. Riva et al. (2006) studied the influence of K het- We are primarily interested in analyzing the effect of − variabil- erogeneities on solute transport with constant effective , and later ity on different EPMs with the goal of: (a) improving our fundamental expanded their analysis in Riva et al. (2008) , where both K and were understanding of the significance of these variabilities to contaminant considered random variables. Riva et al. (2008) highlighted that con- transport and (b) exploring how the

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us