A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

International Journal of Molecular Sciences Review A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures Yu Qi 1, Hui Wang 1,*, Kai Wei 1, Ya Yang 1, Ru-Yue Zheng 1, Ick Soo Kim 2 and Ke-Qin Zhang 1,* 1 National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; [email protected] (Y.Q.); [email protected] (K.W.); [email protected] (Y.Y.); [email protected] (R.-Y.Z.) 2 Nano Fusion Technology Research Lab, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Shinshu University, Ueda, Nagano 386 8567, Japan; [email protected] * Correspondence: [email protected] (H.W.); [email protected] (K.-Q.Z.) Academic Editors: John G. Hardy and Chris Holland Received: 24 November 2016; Accepted: 11 January 2017; Published: 3 March 2017 Abstract: The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed. Keywords: silk fibroin; structure; biomaterials 1. Introduction Silks are commonly defined as protein polymers, which are present in the glands of arthropods such as silkworms, spiders, scorpions, mites, and bees, and then spun into fibers during their metamorphosis. The composition, structure, and properties of silks collected from different sources show variation [1,2]. In recent years, silk from Bombyx mori (silkworm) has been discussed extensively due to its biocompatibility, robust mechanical performance, tunable degradation, ease of processing, sufficient supply, and ease of acquisition from the mature sericulture industry [1–4]. Silkworm silk has been used in the traditional textile industry for more than 4000 years; it is admired for its soft, pearly luster and good mechanical properties [3,5]. Silk is composed of two major proteins: silk fibroin (SF) and sericin. The glue-like sericin protein wraps around fibroin; it is generally soluble and can be removed by a thermo-chemical treatment, also known as degumming [2,6]. Silk fibroin, a natural fibrous protein, is a more biocompatible biomaterial than some commonly used biological polymers such as collagen and poly(L-lactic acid) (PLA) [7]. The application of SF as a biomaterial began centuries ago, with its use as sutures for wound treatment [2,8]. Due to their excellent performance, SF-based biomaterials have been found suitable for a variety of applications, including drug delivery [9], vascular tissue regeneration [10], skin wound dressing [11], and bone tissue scaffolds [12]. Both synthetic and natural polymers have been widely used as biomaterials in tissue engineering. While synthetic polymers are more easily obtained through simple processing and modifications, Int. J. Mol. Sci. 2017, 18, 237; doi:10.3390/ijms18030237 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2017, 18, 237 2 of 21 natural polymers offer better biocompatibility [13]. Biomaterials for tissue engineering applications must incorporate the following properties: (1) excellent biocompatibility in vivo; (2) optimized physical properties, especially mechanical properties; (3) ability for construction of topographic and morphological cues; (4) degradability with safe by-products; and (5) diffusivity control [14]. In particular, surface topography and the micro/nanostructures of biomaterials play an important role in cellular response. A biomaterial’s micro/nanostructure not only affects the form and migration of cells, but also influences the differentiation of stem cells [15–18]. Through different treatments, SF can be arranged to hold a broad range of forms, such as solution, powder, fibers, films, hydrogels, and sponges; this allows the use of SF for constructing many different scale structures ranging across the nano, micro, and macro [4,14]. In the past decades, the scientific community has investigated a great number of inherent structures of biological materials and their corresponding functions [19–21]. The structures of SF-based biomaterials are diverse; their ability to form particulate, fiber, film, and three-dimensional (3D) porous structures make them capable of unique biological functions. Many living organisms found in nature exhibit fascinating multiple functionalities arising from their multi-level surface structures. Inspired by the multifunctionality displayed by nature, the development of SF-based biomaterials is aimed to realize the possibility of fabricating biomimetic multi-level structures for multifunctional integration in various biological applications. In this review article, we summarize recent research progress in some typical single structure constructions of SF-based materials with different biological functions. Corresponding biomimetic SF-based materials with multi-level structures are also presented and discussed. 2. Physicochemical Properties of Silk Fibroin as Biomaterials Silk fibroin was recognized by the US Food and Drug Administration (FDA) as a biomaterial in 1993 [4]. Compared with other natural biopolymers, SF is promising due to its excellent mechanical properties, good biocompatibility, biodegradability, and the versatility of structural re-adjustments. These advantageous properties are attributed to its unique physicochemical properties. Silk from silkworms is composed of two primary proteins: SF (approximately 75%) and sericin (approximately 25%) (Figure1)[ 22]. In raw silk, sericin is positioned across the surface of two parallel fibroin fibers, binding them together. Silk fibroin is a fibrous protein with a semi-crystalline structure that provides stiffness and strength. Sericin is a glue-like amorphous protein that acts as an adhesive binder to keep the structural integrity of the fibers. Sericin is soluble and can be removed by a thermochemical process known as degumming [6,23]. Silk fibroin consists of a heavy (H) chain (~390 kDa) and a light (L) chain (~26 kDa) linked together via a single disulfide bond at the C-terminus of the H-chain, forming an H–L complex. A glycoprotein P25 (~25 kDa) is also non-covalently linked to the H–L complex. The H-chain, L-chain, and P25 are assembled in a ratio of 6:6:1 to form silkworm silk. The amino acid composition of SF from Bombyx mori consists mainly of Gly (43%), Ala (30%), and Ser (12%). The hydrophobic domains of the H-chain contain a repetitive hexapeptide sequence of Gly-Ala-Gly-Ala-Gly-Ser and repeats of Gly-Ala/Ser/Tyr dipeptides, which can form stable anti-parallel β-sheet crystallites. The amino acid sequence of the L-chain is non-repetitive, so the L-chain is more hydrophilic and relatively elastic [3,24–27]. The main crystal structures of silkworm SF are silk I and silk II. The little and unstable silk III structure also exists in regenerated SF solution at the air/water interface. Silk I is a metastable structure with crank or S zigzag structure spatial conformation, belonging to the orthorhombic system. Silk II is an anti-parallel β-sheet structure, belonging to the monoclinic system. Strong hydrogen bonds between adjacent segments contribute greatly to the rigidity and tensile strength of SF [3,4,28]. The silk I structure can be easily converted to silk II via methanol or potassium phosphate treatment [29–31]. Int. J. Mol. Sci. 2017, 18, 237 3 of 21 Int. J. Mol. Sci. 2017, 18, 237 3 of 20 Int. J. Mol. Sci. 2017, 18, 237 3 of 20 FigureFigure 1. Schematic 1. Schematic presentation presentation of of the the silk silk fibroinfibroin (SF) structure; structure; d drepresents represents the thediameter diameter of a single of a single silkwormFiguresilkworm 1. thread. Schematic thread. Reproduced Reproduced presentation from from of [the28 [28]]. silk. fibroin (SF) structure; d represents the diameter of a single silkworm thread. Reproduced from [28]. 3. Structure Design of Silk Fibroin-Based Biomaterials 3. Structure Design of Silk Fibroin-Based Biomaterials 3. StructureAs SF Design possesses of Silk excellent Fibroin-Based processability, Biomaterials various forms of SF-based biomaterials can be As SF possesses excellent processability, various forms of SF-based biomaterials can be fabricated fabricatedAs SF usingpossesses different excellent treatments processability,. To obtain the various aqueous forms regenerated of SF-based SF solution, biomaterials silk is processed can be usingby different the following treatments. steps (Figure To obtain 2). Degumming the aqueous is the regenerated first step to processing SF solution, raw silksilkworm is processed silk. Then by the fabricated using different treatments. To obtain the aqueous regenerated SF solution, silk is processed followingthe

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us