
<p>RF Power Generation I </p><p>Gridded Tubes and Solid-state Amplifiers </p><p>Professor R.G. Carter </p><p>Engineering Department, Lancaster University, U.K. and <br>The Cockcroft Institute of Accelerator Science and Technology </p><p>Overview </p><p>• High power RF sources required for all accelerators > 20 MeV • Amplifiers are needed for control of amplitude and phase • RF power output </p><p>– 10 kW to 2 MW cw – 100 kW to 150 MW pulsed </p><p>• Frequency range </p><p>– 50 MHz to 50 GHz </p><p>• Capital and operating cost is affected by </p><p>– Lifetime cost of the amplifier – Efficiency (electricity consumption) – Gain (number of stages in the RF amplifier chain) – Size and weight (space required) </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">2</li></ul><p></p><p>General principles </p><p>• RF systems </p><p>– RF sources extract RF power from high charge, low energy electron bunches </p><p>– RF transmission components <br>(couplers, windows, circulators etc.) convey the RF power from the source to the accelerator </p><p>– RF accelerating structures use the <br>RF power to accelerate low charge bunches to high energies </p><p><em>P </em> <em>P </em> <em>P</em><sub style="top: 0.405em;"><em>RF out </em></sub> <em>Heat </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>RF in </em></li><li style="flex:1"><em>DC in </em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>P</em></li><li style="flex:1"><em>P</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>RF out </em></li><li style="flex:1"><em>RF out </em></li></ul><p></p><p>• RF sources </p><p><em>Efficiency </em> </p><p></p><p><em>P </em> <em>P </em><br><em>P</em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>DC in </em></li><li style="flex:1"><em>RF in </em></li><li style="flex:1"><em>DC in </em></li></ul><p></p><p>– Size must be small compared with the distance an electron moves in one RF cycle </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p><em>P</em></p><p><em>RF out </em></p><p><em>Gain dB </em>10log </p><p> </p><p><sub style="top: 0.1999em;">10 </sub> </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>– Energy not extracted as RF must be disposed of as heat </p><p><em>P</em></p><p><em>RF in </em></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">3</li></ul><p></p><p>RF Source Technologies </p><p></p><ul style="display: flex;"><li style="flex:1">• Vacuum tubes </li><li style="flex:1">• Solid state </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">– High electron mobility </li><li style="flex:1">– Wide band-gap materials (Si, </li></ul><p>GaAs, GaN, SiC, diamond) </p><p>– Low carrier mobility – Small size <br>– Large size – High voltage </p><p>– High current </p><p>• Tube types </p><p>– Low voltage <br>– Gridded Tubes (Tetrodes) </p><p>– Inductive output tubes (IOTs) – Klystrons </p><p>• Single Transistors </p><p>– Si LDMOS: 450 W at 860 MHz – GaN: 180W at 3.5 GHz; 80 W at <br>9.6 GHz <br>– Gyrotrons – Magnetrons (locked oscillators) <br>– GaAs: 65 W at 14 GHz </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">4</li></ul><p></p><p>SOLEIL 352 MHz amplifier </p><p>•••</p><p>Output power 180 kW 726 × 315 modules in 4 towers 2 × Si LDMOS transistors per module in push-pull </p><p>••</p><p>53dB Gain Overall efficiency ~ 50% </p><p>Images courtesy of Synchrotron SOLEIL </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">5</li></ul><p></p><p>Solid State </p><p></p><ul style="display: flex;"><li style="flex:1">Advantages </li><li style="flex:1">Disadvantages </li></ul><p></p><p>• No warm-up time • High reliability • Low voltage (<100 V) • Air cooling <br>• Complexity • Losses in combiners • Failed transistors must be isolated • Electrically fragile </p><ul style="display: flex;"><li style="flex:1">• High I<sup style="top: -0.4165em;">2</sup>R losses </li><li style="flex:1">• Low maintenance </li></ul><p></p><ul style="display: flex;"><li style="flex:1">• High stability </li><li style="flex:1">• Low efficiency </li></ul><p>• Graceful degradation </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">6</li></ul><p></p><p>Tetrode construction </p><p>Cathode </p><p>Control grid </p><p>Screen grid </p><p>Anode </p><p>Images courtesy of e2v technologies </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">7</li></ul><p></p><p>Tetrode characteristics </p><p><sup style="top: -1.0303em;"><em>n </em></sup><br><em>V</em><sub style="top: 0.395em;"><em>g </em>2 </sub></p><p></p><p><em>V</em><sub style="top: 0.3953em;"><em>a </em></sub></p><p><em>I</em><sub style="top: 0.3957em;"><em>a </em></sub> <em>C V</em><sub style="top: 0.3957em;"><em>g</em>1 </sub> </p><p><br></p><p><br></p><p><sub style="top: 0.3899em;">2 </sub><sub style="top: 0.389em;"><em>a </em></sub></p><p>• <em>n </em>= 1.5 to 2.5 • DC bias conditions relative to cathode </p><p>– Anode voltage positive – Screen grid positive (~ 10% V<sub style="top: 0.3356em;">a</sub>) – Control grid negative </p><p>• Anode current depends </p><p>– Strongly on control grid voltage – Weakly on anode voltage </p><p>• In practice Anode is at earth potential </p><p>Graph courtesy of Siemens AG </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">8</li></ul><p></p><p>Tetrode common grid connection </p><p>• Grids held at RF ground isolate input from output </p><p>• Input is coaxial • Anode resonant circuit is a reentrant coaxial cavity </p><p>• Output is capacitively or inductively coupled </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">9</li></ul><p></p><p>Class B operation </p><p>•</p><p>Control grid bias set so that anode current is zero when no RF input </p><p>••</p><p>Conduction angle = 180° Resonant circuit makes anode voltage variation sinusoidal </p><p></p><p>2</p><p><em>I</em><sub style="top: 0.375em;">2 </sub> <em>I</em><sub style="top: 0.375em;">0 </sub></p><p><em>V</em><sub style="top: 0.375em;">2 </sub> 0.9<em>V</em><sub style="top: 0.375em;">0 </sub></p><p>••</p><p>V<sub style="top: 0.3339em;">a </sub>> V<sub style="top: 0.3339em;">g2 </sub>always Theoretical efficiency ~70% </p><p>1<br>0.9 </p><p><em>P </em> <em>I</em><sub style="top: 0.3751em;">2</sub><em>V</em><sub style="top: 0.3751em;">2 </sub> <br><em>I</em><sub style="top: 0.3751em;">0</sub><em>V</em><sub style="top: 0.3751em;">0 </sub></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">4</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">10 </li></ul><p></p><p>Classes of amplification </p><p>Class A<br>Conduction angle <br>Maximum theoretical efficiency </p><ul style="display: flex;"><li style="flex:1">Gain increasing </li><li style="flex:1">Harmonics </li></ul><p>increasing </p><p></p><ul style="display: flex;"><li style="flex:1">360° </li><li style="flex:1">50% </li></ul><p>AB B<br>180° – 360° 180° <br>50% - 78% 78% </p><ul style="display: flex;"><li style="flex:1">C</li><li style="flex:1">< 180° </li><li style="flex:1">78% - 100% </li></ul><p>• All classes apart from A must have a resonant load and are therefore narrow band amplifiers </p><p>• Class AB or B usually used for accelerators </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">11 </li></ul><p></p><p>CERN 62 kW 200 MHz amplifier </p><p>• RS 2058 CJ tetrode </p><p>– Siemens (now Thales) </p><p>• Class AB operation </p><p>– Assume Class B for illustration </p><p>• Efficiency - 64% </p><p>Photo courtesy of e2v technologies <br>Photo courtesy of CERN </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">12 </li></ul><p></p><p>Tetrode amplifier design </p><p>•••</p><p>Choose <em>V</em><sub style="top: 0.335em;"><em>a </em></sub>= 10 kV, <em>V</em><sub style="top: 0.335em;"><em>g</em>2 </sub>= 900 V </p><p>Choose <em>V</em><sub style="top: 0.3347em;"><em>a </em></sub>= 1.5 kV when <em>I</em><sub style="top: 0.3347em;"><em>a </em></sub>= <em>I</em><sub style="top: 0.3347em;"><em>pk </em></sub></p><p>Theoretical Class B efficiency </p><p>0.85 </p><p><sub style="top: 0.395em;"><em>th </em></sub> </p><p> 67 % <br>4</p><p>62 </p><p><em>P </em> </p><p> 92.5 kW </p><p>0</p><p>0.67 </p><p>88.6 </p><p><em>I</em><sub style="top: 0.4006em;">0 </sub> </p><p> 9.25 A <br>10 </p><p>••</p><p>Assume <em>I</em><sub style="top: 0.3349em;"><em>pk </em></sub>= 4<em>I</em><sub style="top: 0.3349em;">0 </sub>(theoretically <em>π I</em><sub style="top: 0.3349em;">0</sub>) </p><p><em>I</em><sub style="top: 0.395em;"><em>pk </em></sub> 37 A </p><p>and draw the load line </p><p>Graph courtesy of Siemens AG </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">13 </li></ul><p></p><p>Calculation of performance (1) </p><p><strong>Angle </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>V</strong><sub style="top: 0.185em;"><strong>a </strong></sub></li><li style="flex:1"><strong>I</strong><sub style="top: 0.185em;"><strong>a </strong></sub></li></ul><p></p><p>•</p><p>Find V<sub style="top: 0.335em;">a </sub>and I<sub style="top: 0.335em;">a </sub>in 15° steps </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>(deg) (kV) </strong></li><li style="flex:1"><strong>(A) </strong></li></ul><p></p><p><em>V</em><sub style="top: 0.47em;"><em>a </em></sub><em>V</em><sub style="top: 0.47em;">0 </sub><em>V</em><sub style="top: 0.47em;">2 </sub>cos </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0</strong></li><li style="flex:1"><strong>1.5 </strong></li></ul><p><strong>1.8 2.6 4.0 5.7 7.8 </strong><br><strong>10.0 </strong><br><strong>37 35 30 20 8.5 </strong><br><strong>3</strong><br><strong>15 30 45 60 75 90 </strong></p><p>•</p><p>Find I<sub style="top: 0.3353em;">0 </sub>and I<sub style="top: 0.3353em;">1 </sub>by numerical Fourier analysis </p><p>1</p><p><em>P </em> <em>V</em><sub style="top: 0.3505em;">2</sub><em>I</em><sub style="top: 0.3505em;">2 </sub></p><p><em>P </em> <em>I</em><sub style="top: 0.35em;">0</sub><em>V</em><sub style="top: 0.35em;">0 </sub></p><p>2</p><p>0</p><p>2</p><p><strong>0</strong></p><p><em>P</em></p><p>2</p><p><em>V</em><sub style="top: 0.345em;">2 </sub></p><p> </p><p><em>R</em><sub style="top: 0.3499em;">2 </sub> </p><p><strong>V</strong><sub style="top: 0.1842em;"><strong>0 </strong></sub><strong>= V</strong><sub style="top: 0.1854em;"><strong>2 </strong></sub><strong>= P</strong><sub style="top: 0.1854em;"><strong>0 </strong></sub><strong>= </strong></p><p><strong></strong></p><p><strong>10.0 kV </strong><br><strong>8.5 kV 96 kW </strong><br><strong>I</strong><sub style="top: 0.185em;"><strong>0 </strong></sub><strong>= I</strong><sub style="top: 0.185em;"><strong>2 </strong></sub><strong>= </strong></p><ul style="display: flex;"><li style="flex:1"><strong>9.6 </strong></li><li style="flex:1"><strong>A</strong></li></ul><p></p><p><em>P</em></p><p>0</p><p><em>I</em><sub style="top: 0.3454em;">2 </sub></p><p><strong>16.2 A </strong></p><p>••</p><p>Initial estimate of I<sub style="top: 0.3344em;">pk</sub>/I<sub style="top: 0.3344em;">0 </sub>was too high Iterate for self-consistent solution </p><p><strong>P</strong><sub style="top: 0.185em;"><strong>2 </strong></sub><strong>= R</strong><sub style="top: 0.1854em;"><strong>2 </strong></sub><strong>= </strong><br><strong>69 kW </strong></p><ul style="display: flex;"><li style="flex:1"><strong>72 </strong></li><li style="flex:1"><strong>%</strong></li><li style="flex:1"><strong>524 </strong></li></ul><p></p><p><strong></strong></p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1"><em>I </em> (0.5<em>I </em> <em>I </em></li><li style="flex:1"> <em>I </em></li><li style="flex:1"> <em>I </em></li><li style="flex:1"> <em>I </em></li><li style="flex:1"> <em>I </em></li></ul><p></p><p>)<br>0</p><p><em>a</em>0 <em>a</em>15 <em>a</em>30 <em>a</em>45 <em>a</em>60 <em>a</em>75 </p><p>12 </p><p>1</p><p><em>I </em> (<em>I </em>1.93<em>I a</em>0 </p><ul style="display: flex;"><li style="flex:1">1.73<em>I </em></li><li style="flex:1">1.41<em>I </em></li><li style="flex:1"> <em>I </em></li></ul><p><em>a</em>45 <em>a</em>60 <br> 0.52<em>I </em></p><p>)<br>2</p><p></p><ul style="display: flex;"><li style="flex:1"><em>a</em>15 </li><li style="flex:1"><em>a</em>30 </li><li style="flex:1"><em>a</em>75 </li></ul><p></p><p>12 </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">14 </li></ul><p></p><p>Calculation of performance (2) </p><p>• Grounded grid operation </p><p></p><ul style="display: flex;"><li style="flex:1">Calculated </li><li style="flex:1">Measured </li></ul><p>10 </p><p>V<sub style="top: 0.3346em;">0 </sub>I<sub style="top: 0.3355em;">0 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">10 </li><li style="flex:1">kV </li></ul><p>A</p><p><em>V </em> 80 240 320 V </p><p>1</p><p>9.6 69 <br>9.4 </p><p>P<sub style="top: 0.3355em;">2 </sub>P<sub style="top: 0.3348em;">1 </sub></p><p>Gain </p><p></p><p></p><ul style="display: flex;"><li style="flex:1">62 </li><li style="flex:1">kW </li></ul><p>kW dB %</p><p><em>I</em><sub style="top: 0.47em;">1 </sub> <em>I</em><sub style="top: 0.47em;">2 </sub> <em>I</em><sub style="top: 0.47em;"><em>g</em>1 <em>RF </em></sub> <em>I</em><sub style="top: 0.47em;">2 </sub></p><p>2.6 14.3 72 <br>1.8 </p><p><em>V</em></p><p>1</p><p>15.4 64 </p><p><em>R </em> 20 </p><p>1</p><p><em>I</em><sub style="top: 0.475em;">1 </sub></p><p>1</p><p><em>P </em> <em>V I </em> 2.59 kW </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1 1 </li></ul><p></p><p>2</p><p>W.Herdrich and H.P. Kindermann, “RF power amplifier for the CERN SPS operating as LEP injector”, </p><p> </p><p><em>P</em></p><p>2</p><p> </p><p><em>P</em></p><p></p><ul style="display: flex;"><li style="flex:1">Gain 10log<sub style="top: 0.475em;">10 </sub></li><li style="flex:1">14.3 dB </li></ul><p></p><p>CERN SPS/85-32, PAC 1985 </p><p></p><p>1</p><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">15 </li></ul><p></p><p>Tetrode input and output circuits </p><p>• Input and output circuits are coaxial </p><p><em>b</em></p><p> </p><p><em>Z</em><sub style="top: 0.435em;">0 </sub> 60ln </p><p><br> </p><p><em>a</em></p><p> </p><p>• <em>a </em>= inner diameter, <em>b </em>= outer diameter </p><p>• Characteristic impedance is very low (~ few ohms) </p><p>• Careful design of matching is essential </p><p><em>R </em> 20 <em>X</em><sub style="top: 0.41em;"><em>kg</em>1 </sub> 5.7 </p><p><em>in </em></p><p><em>R</em><sub style="top: 0.411em;"><em>out </em></sub> 524 <em>X</em><sub style="top: 0.411em;"><em>g </em>2<em>a </em></sub> 20 </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">16 </li></ul><p></p><p>Cooling and protection </p><p></p><ul style="display: flex;"><li style="flex:1">Anode Cooling </li><li style="flex:1">Protection </li></ul><p></p><p>•</p><p>••</p><p>Air </p><p>••••</p><p>Coolant flow </p><ul style="display: flex;"><li style="flex:1">Water </li><li style="flex:1">Coolant temperature </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Tube temperature </li><li style="flex:1">Vapour phase </li></ul><p>Anode, screen and grid overcurrent </p><p>•</p><p>Anode voltage (fast) </p><p>Switch-on sequence </p><p>••</p><p>Heater voltage Grid bias <br>(pause) </p><p>•••</p><p>Anode voltage Screen grid voltage RF drive </p><p>Image courtesy of e2v technologies </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">17 </li></ul><p></p><p>Combining tetrode amplifiers </p><p>CERN SPS 200 MHz, 500 kW, amplifiers </p><p>Photo courtesy of CERN </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">18 </li></ul><p></p><p>Tetrode limitations </p><p>•••</p><p>Cathode current density Anode dissipation Transit time </p><p>•••</p><p>Anode length << λ<sub style="top: 0.335em;">0 </sub>Anode diameter RF screen grid dissipation </p><p>Thales Diacrode® reduces this </p><p>–</p><p>V<sub style="top: 0.25em;">a </sub>least when I<sub style="top: 0.25em;">a </sub>greatest </p><p>•</p><p>Voltage breakdown </p><p>Image courtesy of Thales Electron Devices </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">19 </li></ul><p></p><p>Inductive output tube (IOT) </p><p>Differences from tetrode </p><p>• Electron flow axial </p><p>– Requires axial magnetic field to prevent beam spreading </p><p>• Anode voltage is constant </p><p>– Electron velocity is high </p><p>• Bunched beam induces current in output cavity </p><p>• Separate electron collector </p><p>– Large collection area </p><p>• Increased isolation between input and output </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">20 </li></ul><p></p><p>IOT output gap interaction </p><p>• Beam current class AB or B like a tetrode • At resonance electric field in the gap is maximum retarding when bunch is in the centre of the gap </p><p>• Effective gap voltage reduced by transit time effects </p><p>• Effective gap voltage less than ~0.9V<sub style="top: 0.3341em;">0 </sub>to allow electrons to pass to the collector </p><p>• Theoretical efficiency ~ 70% </p><p>1</p><p></p><p>4</p><p><em>P </em> <em>I</em><sub style="top: 0.475em;">2</sub><em>V</em><sub style="top: 0.475em;"><em>g</em>,<em>eff </em></sub> 0.9<em>I</em><sub style="top: 0.475em;">0</sub><em>V</em><sub style="top: 0.475em;">0 </sub></p><p>2</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">21 </li></ul><p></p><p>UHF IOT for TV broadcasting </p><p>Frequency Power <br>470 - 810 MHz 64 kW <br>Beam voltage Beam current Gain <br>32 kV 3.35 A 23 dB </p><ul style="display: flex;"><li style="flex:1">Efficiency </li><li style="flex:1">60% </li></ul><p></p><p>Photos courtesy of e2v technologies </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">22 </li></ul><p></p><p>Examples of IOTs for accelerators </p><p>Frequency Beam voltage Beam current RF output power Efficiency <br>267 67 <br>500 1300 MHz 40 3.5 90 <br>25 1.0 16 kV </p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">6.0 </li></ul><p>280 70 kW </p><ul style="display: flex;"><li style="flex:1">%</li><li style="flex:1">>65 62 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">>22 21 </li><li style="flex:1">Gain </li><li style="flex:1">22 </li><li style="flex:1">dB </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">23 </li></ul><p></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages23 Page
-
File Size-