RF Power Generation I

RF Power Generation I

<p>RF Power Generation I </p><p>Gridded Tubes and Solid-state Amplifiers </p><p>Professor R.G. Carter </p><p>Engineering Department, Lancaster University, U.K. and <br>The Cockcroft Institute of Accelerator Science and Technology </p><p>Overview </p><p>• High power RF sources required for all accelerators &gt; 20 MeV • Amplifiers are needed for control of amplitude and phase • RF power output </p><p>– 10 kW to 2 MW cw – 100 kW to 150 MW pulsed </p><p>• Frequency range </p><p>– 50 MHz to 50 GHz </p><p>• Capital and operating cost is affected by </p><p>– Lifetime cost of the amplifier – Efficiency (electricity consumption) – Gain (number of stages in the RF amplifier chain) – Size and weight (space required) </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">2</li></ul><p></p><p>General principles </p><p>• RF systems </p><p>– RF sources extract RF power from high charge, low energy electron bunches </p><p>– RF transmission components <br>(couplers, windows, circulators etc.) convey the RF power from the source to the accelerator </p><p>– RF accelerating structures use the <br>RF power to accelerate low charge bunches to high energies </p><p><em>P </em> <em>P </em> <em>P</em><sub style="top: 0.405em;"><em>RF out &nbsp;</em></sub> <em>Heat </em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>RF in </em></li><li style="flex:1"><em>DC in </em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>P</em></li><li style="flex:1"><em>P</em></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>RF out </em></li><li style="flex:1"><em>RF out </em></li></ul><p></p><p>• RF sources </p><p><em>Efficiency </em> </p><p></p><p><em>P </em> <em>P </em><br><em>P</em></p><p></p><ul style="display: flex;"><li style="flex:1"><em>DC in </em></li><li style="flex:1"><em>RF in </em></li><li style="flex:1"><em>DC in </em></li></ul><p></p><p>– Size must be small compared with the distance an electron moves in one RF cycle </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p><em>P</em></p><p><em>RF out </em></p><p><em>Gain dB </em>10log </p><p>  </p><p><sub style="top: 0.1999em;">10 </sub> </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>– Energy not extracted as RF must be disposed of as heat </p><p><em>P</em></p><p><em>RF in </em></p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">3</li></ul><p></p><p>RF Source Technologies </p><p></p><ul style="display: flex;"><li style="flex:1">• Vacuum tubes </li><li style="flex:1">• Solid state </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">– High electron mobility </li><li style="flex:1">– Wide band-gap materials (Si, </li></ul><p>GaAs, GaN, SiC, diamond) </p><p>– Low carrier mobility – Small size <br>– Large size – High voltage </p><p>– High current </p><p>• Tube types </p><p>– Low voltage <br>– Gridded Tubes (Tetrodes) </p><p>– Inductive output tubes (IOTs) – Klystrons </p><p>• Single Transistors </p><p>– Si LDMOS: 450 W at 860 MHz – GaN: 180W at 3.5 GHz; 80 W at <br>9.6 GHz <br>– Gyrotrons – Magnetrons (locked oscillators) <br>– GaAs: 65 W at 14 GHz </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">4</li></ul><p></p><p>SOLEIL 352 MHz amplifier </p><p>•••</p><p>Output power 180 kW 726 × 315 modules in 4 towers 2 × Si LDMOS transistors per module in push-pull </p><p>••</p><p>53dB Gain Overall efficiency ~ 50% </p><p>Images courtesy of Synchrotron SOLEIL </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">5</li></ul><p></p><p>Solid State </p><p></p><ul style="display: flex;"><li style="flex:1">Advantages </li><li style="flex:1">Disadvantages </li></ul><p></p><p>• No warm-up time • High reliability • Low voltage (&lt;100 V) • Air cooling <br>• Complexity • Losses in combiners • Failed transistors must be isolated • Electrically fragile </p><ul style="display: flex;"><li style="flex:1">• High I<sup style="top: -0.4165em;">2</sup>R losses </li><li style="flex:1">• Low maintenance </li></ul><p></p><ul style="display: flex;"><li style="flex:1">• High stability </li><li style="flex:1">• Low efficiency </li></ul><p>• Graceful degradation </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">6</li></ul><p></p><p>Tetrode construction </p><p>Cathode </p><p>Control grid </p><p>Screen grid </p><p>Anode </p><p>Images courtesy of e2v technologies </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">7</li></ul><p></p><p>Tetrode characteristics </p><p><sup style="top: -1.0303em;"><em>n </em></sup><br><em>V</em><sub style="top: 0.395em;"><em>g </em>2 </sub></p><p></p><p><em>V</em><sub style="top: 0.3953em;"><em>a </em></sub></p><p><em>I</em><sub style="top: 0.3957em;"><em>a </em></sub> <em>C V</em><sub style="top: 0.3957em;"><em>g</em>1 </sub> </p><p><br></p><p><br></p><p><sub style="top: 0.3899em;">2 </sub><sub style="top: 0.389em;"><em>a </em></sub></p><p>• <em>n </em>= 1.5 to 2.5 • DC bias conditions relative to cathode </p><p>– Anode voltage positive – Screen grid positive (~ 10% V<sub style="top: 0.3356em;">a</sub>) – Control grid negative </p><p>• Anode current depends </p><p>– Strongly on control grid voltage – Weakly on anode voltage </p><p>• In practice Anode is at earth potential </p><p>Graph courtesy of Siemens AG </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">8</li></ul><p></p><p>Tetrode common grid connection </p><p>• Grids held at RF ground isolate input from output </p><p>• Input is coaxial • Anode resonant circuit is a&nbsp;reentrant coaxial cavity </p><p>• Output is capacitively or inductively coupled </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">9</li></ul><p></p><p>Class B operation </p><p>•</p><p>Control grid bias set so that anode current is zero when no RF input </p><p>••</p><p>Conduction angle = 180° Resonant circuit makes anode voltage variation sinusoidal </p><p></p><p>2</p><p><em>I</em><sub style="top: 0.375em;">2 </sub> <em>I</em><sub style="top: 0.375em;">0 </sub></p><p><em>V</em><sub style="top: 0.375em;">2 </sub> 0.9<em>V</em><sub style="top: 0.375em;">0 </sub></p><p>••</p><p>V<sub style="top: 0.3339em;">a </sub>&gt; V<sub style="top: 0.3339em;">g2 </sub>always Theoretical efficiency ~70% </p><p>1<br>0.9 </p><p><em>P </em> <em>I</em><sub style="top: 0.3751em;">2</sub><em>V</em><sub style="top: 0.3751em;">2 </sub> <br><em>I</em><sub style="top: 0.3751em;">0</sub><em>V</em><sub style="top: 0.3751em;">0 </sub></p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">4</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">10 </li></ul><p></p><p>Classes of amplification </p><p>Class A<br>Conduction angle <br>Maximum theoretical efficiency </p><ul style="display: flex;"><li style="flex:1">Gain increasing </li><li style="flex:1">Harmonics </li></ul><p>increasing </p><p></p><ul style="display: flex;"><li style="flex:1">360° </li><li style="flex:1">50% </li></ul><p>AB B<br>180° – 360° 180° <br>50% - 78% 78% </p><ul style="display: flex;"><li style="flex:1">C</li><li style="flex:1">&lt; 180° </li><li style="flex:1">78% - 100% </li></ul><p>• All classes apart from A must have a resonant load and are therefore narrow band amplifiers </p><p>• Class AB or B usually used for accelerators </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">11 </li></ul><p></p><p>CERN 62 kW 200 MHz amplifier </p><p>• RS 2058 CJ tetrode </p><p>– Siemens (now Thales) </p><p>• Class AB operation </p><p>– Assume Class B for illustration </p><p>• Efficiency - 64% </p><p>Photo courtesy of e2v technologies <br>Photo courtesy of CERN </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">12 </li></ul><p></p><p>Tetrode amplifier design </p><p>•••</p><p>Choose <em>V</em><sub style="top: 0.335em;"><em>a </em></sub>= 10 kV, <em>V</em><sub style="top: 0.335em;"><em>g</em>2 </sub>= 900 V </p><p>Choose <em>V</em><sub style="top: 0.3347em;"><em>a </em></sub>= 1.5 kV when <em>I</em><sub style="top: 0.3347em;"><em>a </em></sub>= <em>I</em><sub style="top: 0.3347em;"><em>pk </em></sub></p><p>Theoretical Class B efficiency </p><p>0.85 </p><p><sub style="top: 0.395em;"><em>th </em></sub> </p><p> 67 % <br>4</p><p>62 </p><p><em>P </em> </p><p> 92.5 kW </p><p>0</p><p>0.67 </p><p>88.6 </p><p><em>I</em><sub style="top: 0.4006em;">0 </sub> </p><p> 9.25 A <br>10 </p><p>••</p><p>Assume <em>I</em><sub style="top: 0.3349em;"><em>pk </em></sub>= 4<em>I</em><sub style="top: 0.3349em;">0 </sub>(theoretically <em>π I</em><sub style="top: 0.3349em;">0</sub>) </p><p><em>I</em><sub style="top: 0.395em;"><em>pk </em></sub> 37 A </p><p>and draw the load line </p><p>Graph courtesy of Siemens AG </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">13 </li></ul><p></p><p>Calculation of performance (1) </p><p><strong>Angle </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>V</strong><sub style="top: 0.185em;"><strong>a </strong></sub></li><li style="flex:1"><strong>I</strong><sub style="top: 0.185em;"><strong>a </strong></sub></li></ul><p></p><p>•</p><p>Find V<sub style="top: 0.335em;">a </sub>and I<sub style="top: 0.335em;">a </sub>in 15° steps </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>(deg) (kV) </strong></li><li style="flex:1"><strong>(A) </strong></li></ul><p></p><p><em>V</em><sub style="top: 0.47em;"><em>a </em></sub><em>V</em><sub style="top: 0.47em;">0 </sub><em>V</em><sub style="top: 0.47em;">2 </sub>cos </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0</strong></li><li style="flex:1"><strong>1.5 </strong></li></ul><p><strong>1.8 2.6 4.0 5.7 7.8 </strong><br><strong>10.0 </strong><br><strong>37 35 30 20 8.5 </strong><br><strong>3</strong><br><strong>15 30 45 60 75 90 </strong></p><p>•</p><p>Find I<sub style="top: 0.3353em;">0 </sub>and I<sub style="top: 0.3353em;">1 </sub>by numerical Fourier analysis </p><p>1</p><p><em>P </em> <em>V</em><sub style="top: 0.3505em;">2</sub><em>I</em><sub style="top: 0.3505em;">2 </sub></p><p><em>P </em> <em>I</em><sub style="top: 0.35em;">0</sub><em>V</em><sub style="top: 0.35em;">0 </sub></p><p>2</p><p>0</p><p>2</p><p><strong>0</strong></p><p><em>P</em></p><p>2</p><p><em>V</em><sub style="top: 0.345em;">2 </sub></p><p>  </p><p><em>R</em><sub style="top: 0.3499em;">2 </sub> </p><p><strong>V</strong><sub style="top: 0.1842em;"><strong>0 </strong></sub><strong>= V</strong><sub style="top: 0.1854em;"><strong>2 </strong></sub><strong>= P</strong><sub style="top: 0.1854em;"><strong>0 </strong></sub><strong>= </strong></p><p><strong></strong></p><p><strong>10.0 kV </strong><br><strong>8.5 kV 96 kW </strong><br><strong>I</strong><sub style="top: 0.185em;"><strong>0 </strong></sub><strong>= I</strong><sub style="top: 0.185em;"><strong>2 </strong></sub><strong>= </strong></p><ul style="display: flex;"><li style="flex:1"><strong>9.6 </strong></li><li style="flex:1"><strong>A</strong></li></ul><p></p><p><em>P</em></p><p>0</p><p><em>I</em><sub style="top: 0.3454em;">2 </sub></p><p><strong>16.2 A </strong></p><p>••</p><p>Initial estimate of I<sub style="top: 0.3344em;">pk</sub>/I<sub style="top: 0.3344em;">0 </sub>was too high Iterate for self-consistent solution </p><p><strong>P</strong><sub style="top: 0.185em;"><strong>2 </strong></sub><strong>= R</strong><sub style="top: 0.1854em;"><strong>2 </strong></sub><strong>= </strong><br><strong>69 kW </strong></p><ul style="display: flex;"><li style="flex:1"><strong>72 </strong></li><li style="flex:1"><strong>%</strong></li><li style="flex:1"><strong>524 </strong></li></ul><p></p><p><strong></strong></p><p>1</p><p></p><ul style="display: flex;"><li style="flex:1"><em>I </em> (0.5<em>I </em> <em>I </em></li><li style="flex:1"> <em>I </em></li><li style="flex:1"> <em>I </em></li><li style="flex:1"> <em>I </em></li><li style="flex:1"> <em>I </em></li></ul><p></p><p>)<br>0</p><p><em>a</em>0 <em>a</em>15 <em>a</em>30 <em>a</em>45 <em>a</em>60 <em>a</em>75 </p><p>12 </p><p>1</p><p><em>I </em> (<em>I </em>1.93<em>I a</em>0 </p><ul style="display: flex;"><li style="flex:1">1.73<em>I </em></li><li style="flex:1">1.41<em>I </em></li><li style="flex:1"> <em>I </em></li></ul><p><em>a</em>45 <em>a</em>60 <br> 0.52<em>I </em></p><p>)<br>2</p><p></p><ul style="display: flex;"><li style="flex:1"><em>a</em>15 </li><li style="flex:1"><em>a</em>30 </li><li style="flex:1"><em>a</em>75 </li></ul><p></p><p>12 </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">14 </li></ul><p></p><p>Calculation of performance (2) </p><p>• Grounded grid operation </p><p></p><ul style="display: flex;"><li style="flex:1">Calculated </li><li style="flex:1">Measured </li></ul><p>10 </p><p>V<sub style="top: 0.3346em;">0 </sub>I<sub style="top: 0.3355em;">0 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">10 </li><li style="flex:1">kV </li></ul><p>A</p><p><em>V </em> 80  240  320 V </p><p>1</p><p>9.6 69 <br>9.4 </p><p>P<sub style="top: 0.3355em;">2 </sub>P<sub style="top: 0.3348em;">1 </sub></p><p>Gain </p><p></p><p></p><ul style="display: flex;"><li style="flex:1">62 </li><li style="flex:1">kW </li></ul><p>kW dB %</p><p><em>I</em><sub style="top: 0.47em;">1 </sub> <em>I</em><sub style="top: 0.47em;">2 </sub> <em>I</em><sub style="top: 0.47em;"><em>g</em>1 <em>RF </em></sub> <em>I</em><sub style="top: 0.47em;">2 </sub></p><p>2.6 14.3 72 <br>1.8 </p><p><em>V</em></p><p>1</p><p>15.4 64 </p><p><em>R </em> &nbsp;20  </p><p>1</p><p><em>I</em><sub style="top: 0.475em;">1 </sub></p><p>1</p><p><em>P </em> <em>V I &nbsp;</em> 2.59 kW </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1 1 </li></ul><p></p><p>2</p><p>W.Herdrich and H.P. Kindermann, “RF power amplifier for the CERN SPS operating as LEP injector”, </p><p>  </p><p><em>P</em></p><p>2</p><p>  </p><p><em>P</em></p><p></p><ul style="display: flex;"><li style="flex:1">Gain 10log<sub style="top: 0.475em;">10 </sub></li><li style="flex:1">14.3 dB </li></ul><p></p><p>CERN SPS/85-32, PAC 1985 </p><p></p><p>1</p><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">15 </li></ul><p></p><p>Tetrode input and output circuits </p><p>• Input and output circuits are coaxial </p><p><em>b</em></p><p>  </p><p><em>Z</em><sub style="top: 0.435em;">0 </sub> 60ln </p><p><br>  </p><p><em>a</em></p><p>  </p><p>• <em>a </em>= inner diameter, <em>b </em>= outer diameter </p><p>• Characteristic impedance is very low (~ few ohms) </p><p>• Careful design of matching is essential </p><p><em>R </em> 20  <em>X</em><sub style="top: 0.41em;"><em>kg</em>1 </sub> 5.7  </p><p><em>in </em></p><p><em>R</em><sub style="top: 0.411em;"><em>out </em></sub> 524  <em>X</em><sub style="top: 0.411em;"><em>g </em>2<em>a </em></sub> 20  </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">16 </li></ul><p></p><p>Cooling and protection </p><p></p><ul style="display: flex;"><li style="flex:1">Anode Cooling </li><li style="flex:1">Protection </li></ul><p></p><p>•</p><p>••</p><p>Air </p><p>••••</p><p>Coolant flow </p><ul style="display: flex;"><li style="flex:1">Water </li><li style="flex:1">Coolant temperature </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Tube temperature </li><li style="flex:1">Vapour phase </li></ul><p>Anode, screen and grid overcurrent </p><p>•</p><p>Anode voltage (fast) </p><p>Switch-on sequence </p><p>••</p><p>Heater voltage Grid bias <br>(pause) </p><p>•••</p><p>Anode voltage Screen grid voltage RF drive </p><p>Image courtesy of e2v technologies </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">17 </li></ul><p></p><p>Combining tetrode amplifiers </p><p>CERN SPS 200 MHz, 500 kW, amplifiers </p><p>Photo courtesy of CERN </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">18 </li></ul><p></p><p>Tetrode limitations </p><p>•••</p><p>Cathode current density Anode dissipation Transit time </p><p>•••</p><p>Anode length &lt;&lt; λ<sub style="top: 0.335em;">0 </sub>Anode diameter RF screen grid dissipation </p><p>Thales Diacrode® reduces this </p><p>–</p><p>V<sub style="top: 0.25em;">a </sub>least when I<sub style="top: 0.25em;">a </sub>greatest </p><p>•</p><p>Voltage breakdown </p><p>Image courtesy of Thales Electron Devices </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">19 </li></ul><p></p><p>Inductive output tube (IOT) </p><p>Differences from tetrode </p><p>• Electron flow axial </p><p>– Requires axial magnetic field to prevent beam spreading </p><p>• Anode voltage is constant </p><p>– Electron velocity is high </p><p>• Bunched beam induces current in output cavity </p><p>• Separate electron collector </p><p>– Large collection area </p><p>• Increased isolation between input and output </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">20 </li></ul><p></p><p>IOT output gap interaction </p><p>• Beam current class AB or B like a tetrode • At resonance electric field in the gap is maximum retarding when bunch is in the centre of the gap </p><p>• Effective gap voltage reduced by transit time effects </p><p>• Effective gap voltage less than ~0.9V<sub style="top: 0.3341em;">0 </sub>to allow electrons to pass to the collector </p><p>• Theoretical efficiency ~ 70% </p><p>1</p><p></p><p>4</p><p><em>P </em> <em>I</em><sub style="top: 0.475em;">2</sub><em>V</em><sub style="top: 0.475em;"><em>g</em>,<em>eff </em></sub> 0.9<em>I</em><sub style="top: 0.475em;">0</sub><em>V</em><sub style="top: 0.475em;">0 </sub></p><p>2</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">21 </li></ul><p></p><p>UHF IOT for TV broadcasting </p><p>Frequency Power <br>470 - 810 MHz 64 kW <br>Beam voltage Beam current Gain <br>32 kV 3.35 A 23 dB </p><ul style="display: flex;"><li style="flex:1">Efficiency </li><li style="flex:1">60% </li></ul><p></p><p>Photos courtesy of e2v technologies </p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">22 </li></ul><p></p><p>Examples of IOTs for accelerators </p><p>Frequency Beam voltage Beam current RF output power Efficiency <br>267 67 <br>500 1300&nbsp;MHz 40 3.5 90 <br>25 1.0 16 kV </p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">6.0 </li></ul><p>280 70 kW </p><ul style="display: flex;"><li style="flex:1">%</li><li style="flex:1">&gt;65 62 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">&gt;22 21 </li><li style="flex:1">Gain </li><li style="flex:1">22 </li><li style="flex:1">dB </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">June 2010 </li><li style="flex:1">CAS RF for Accelerators, Ebeltoft </li><li style="flex:1">23 </li></ul><p></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us