
<p><strong>The wine proteins: origin, characteristics and functionality </strong></p><p>Andrea Curioni <br>Dipartimento di Biotecnologie Agrarie <br>Centro interdipartimentale per la Ricerca in Viticoltura ed Enologia (CIRVE) </p><p>Università di Padova </p><p>1</p><p>The CIRVE campus in Conegliano </p><p>2</p><p>Protein Structure / Functionality </p><p>Aminoacid sequence </p><p> <strong>Protein </strong></p><p>• <strong>Size </strong>• <strong>Charge </strong></p><p>Protein structure </p><p>• <strong>Hydrophobicity </strong></p><p>Proprieties </p><p><strong>Functionality </strong></p><p> <strong>Environment </strong></p><p>• <strong>pH </strong></p><p><strong>Detectable </strong></p><p>• <strong>Solvent </strong></p><p><strong>effects </strong></p><p>• <strong>Ionic strength </strong>• <strong>Temperature </strong>• <strong>Etc. </strong></p><p>3</p><p>Proteins in wine </p><p><strong>Implications in wine </strong></p><p>–<strong>Hazing of white wines (negative) </strong></p><p>–“Mouthfeel” and aroma –Foam volume and stability </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>4</p><p>Protein Haze in wine </p><p> <strong>Serious quality defect </strong> <strong>Prevention: Protein removal by bentonite treatments </strong></p><p><strong>Bottled wine </strong><br><strong>Precipitation </strong></p><ul style="display: flex;"><li style="flex:1"><strong>Flocculation </strong></li><li style="flex:1"><strong>Coagulation </strong></li></ul><p></p><p><strong>Bentonite </strong></p><p>Other methods? </p><p><strong>several drawbacks: </strong>• <strong>Loss of aroma </strong></p><p><strong>Knowledge is needed </strong></p><p>• <strong>Cost </strong>• <strong>Waste </strong>• <strong>….. </strong></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>5</p><p>Wine Proteins: Origin </p><p>Where do the wine proteins came from? </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>6</p><p>Wine Proteins: Origin </p><p>• The wine proteins derive from </p><p> <strong>Grape </strong>(mainly): </p><p><strong>involved in wine hazing </strong></p><p> Microorganisms </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>7</p><p>Grape Proteins </p><p>• Accumulate after veraison </p><p>– with sugars </p><p>• <em>Low quantity </em></p><p>– ≈ hundreds mg/Kg </p><p>• <strong>heterogeneous </strong></p><p>- > 300 components </p><p>• <strong>Few main </strong>components </p><p>Pocock et al. (2000) JAFC 48, 1637 </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>8</p><p>The Grape Proteins similar in all the varieties </p><p>Sarry <em>et al.</em>, 2004 <em>Proteomics</em>, <strong>4</strong>, 201 </p><p><strong>pH </strong></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>9</p><p>Grape Proteins: Identification by MS </p><p><strong>PR-proteins </strong></p><p>Sarry <em>et al.</em>, 2004 <em>Proteomics</em>, <strong>4</strong>, 201 </p><p>10 </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>Grape Proteins: the main components </p><p><strong>Pathogenesis related (PR)-Proteins </strong></p><p>– <strong>THAUMATIN-LIKE PROTEINS </strong>(<strong>TLP</strong>, PR 5) </p><p>• ≈ 24 kDa </p><p>– <strong>CHITINASES </strong>(PR 3) </p><p>• ≈ 30 kDa </p><p>– Osmotins – Beta-(1,3)-glucanases </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>11 </p><p>Thaumatin-like Proteins (TLP) </p><p>• Antifungal activity • Expressed mainly in the berry • Several types </p><p>– main: <strong>VvTL1 </strong>(constitutive) – minor : VvTL2 (less present in healthy grapes), . </p><p>• Tattersall, et al. (1997). Plant Physiology 114, 759; Pocock et al. (2000) </p><p>• No sweet taste </p><p>• Peng, et al. (1997) J. Agric. Food Chem., 45, 4639 </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>12 </p><p>Chitinases </p><p>• Up to 13 isoforms (4 basic and 9 acidic) Derckel et al.(1996), Plant Sci. 119, 31 • Chitinolitic activity </p><p>• Main: class IV chitinase Robinson et al., 1997 Plant Physiol. 114, 771 </p><p><strong>Catalytic domain </strong></p><p><strong>CHITIN- BINDING DOMAIN </strong></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>13 </p><p>Chitinases </p><p>reduced </p><p><strong>Chitinase activity </strong></p><p>Chitinolytic activity detection after SDS-PAGE of </p><p>grape <strong>berries (1), wine (2) </strong>and pomegranate fruit </p><p>(3) proteins under (A)–(C) reducing and (D)–(F) nonreducing conditions. Gels contained (A), (D) 0.01, (B), (E) 0.05, and (C), (F) 0.10% glycol chitin. In (D)–(E), the arrowheads indicate the chitinase isoform retarded in the presence of glycol chitin. </p><p>Vincenzi and Curioni (2005) Electrophoresis, 26, 60 </p><p>Not reduced </p><p> Chitinase is active in wine Chitinase can bind chitin </p><p>Percent chitin in the gel </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>0.01 % </strong></li><li style="flex:1"><strong>0.05 % </strong></li><li style="flex:1"><strong>0.10 % </strong></li></ul><p></p><p>14 </p><p>PR-Proteins </p><p><strong>Pathogen defense </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>1. Inducibility by </strong></li><li style="flex:1"><strong>2. Resistance </strong></li></ul><p></p><p>. pathogens <br>. acidic pH </p><p>. solvents <br>. abiotic stress <br>. proteolysis </p><p><strong>Grape</strong>: only in part <br><strong>PR-Proteins are </strong><br><strong>Constitutive </strong></p><p>.<strong>Stable </strong></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>15 </p><p>What happens to the grape proteins during winemaking? </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>16 </p><p>Proteins and winemaking </p><p><strong>Proteins (but not PR-P) </strong></p><p><strong>1. Juice extraction </strong></p><p>•Denaturation (acidic pH) •Degradation (proteases) •Precipitation (tannins) </p><p>• <strong>Low pH </strong></p><p><strong>only PR-proteins </strong></p><p>• <strong>Grape Proteases </strong></p><p><strong>resist </strong></p><p><strong>2. Fermentation </strong></p><p>• <strong>Yeast Proteases </strong></p><p><strong>WINE </strong></p><p>• <strong>Alcohol </strong></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>17 </p><p>Proteins in wine: Quantity </p><p><strong>Low concentration </strong></p><p>10 – 250 mg/L </p><p>Large <strong>variability </strong></p><p>(reported: < 1 mg/L - > 1 g/L). </p><p><em>Are proteins quantified correctly? </em></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>18 </p><p>Quantification by the Smith assay of the protein recovered by the KDS method from different Prosecco and Manzoni Bianco wine samples. Data are expressed in BSA equivalents. </p><p>Vincenzi et al., AJEV 2005 </p><p><strong>N</strong></p><p><strong>°</strong></p><p><strong>Protein concentration wine </strong><br><strong>(mg/L) ± SD </strong></p><p>123456789</p><p><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup><br><strong>14.9 ± 1.9 15.5 ± 1.5 19.7 ± 0.5 15.7 ± 1.6 20.0 ± 0.5 14.2 ± 0.7 12.2 ± 2.6 14.1 ± 1.7 16.9 ± 1.3 14.7 ± 1.8 </strong><br><strong>121.5 ± 2.9 </strong><br><strong>30.5 ± 3.6 30.5 ± 3.6 26.5 ± 1.9 </strong><br><strong>176.1 ± 9.3 </strong><br><strong>328.0 ± 40.5 </strong><br>10 <strong>Prosecco</strong><sup style="top: -0.375em;"><strong>a </strong></sup>11 <strong>Prosecco</strong><sup style="top: -0.375em;"><strong>b </strong></sup>12 <strong>Incrocio Manzoni 6.0.13</strong><sup style="top: -0.375em;"><strong>a </strong></sup>13 <strong>Incrocio Manzoni 6.0.13</strong><sup style="top: -0.375em;"><strong>a </strong></sup>14 <strong>Incrocio Manzoni 6.0.13</strong><sup style="top: -0.375em;"><strong>a </strong></sup>15 <strong>Incrocio Manzoni 6.0.13</strong><sup style="top: -0.375em;"><strong>a </strong></sup></p><p>A</p><p>Commercial bottled wines; </p><p>b</p><p>wine samples taken before bentonite fining. </p><p>16 <strong>Incrocio Manzoni 6.0.13</strong><sup style="top: -0.375em;"><strong>b </strong></sup></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>19 </p><p>Grape/Juice <em>vs </em>Wine </p><p><strong>Grape </strong><br><strong>WWiniene </strong></p><p>Marangon et al. (2009) JAFC, 57, 4415 </p><p><strong>The wine proteins </strong></p><p>2D-PAGE of wine proteins (<em>cv</em>. Manzoni Bianco) (Polesani, 2004, unpublished). </p><p><strong>Tarragona 2011 </strong></p><p>20 </p><p>Wine Proteins: Preparative Purification </p><p><em>1. </em><strong>Cation exchange chromatography </strong></p><p><em>(SCX) for Chardonnay wine . </em></p><p><strong>2. Hydrophobic interaction chromatography </strong></p><p><em>(HIC, Phenyl Sepharose) </em></p><p><strong>SDS-PAGE bands used for MS identification </strong></p><p><em>SDS-PAGE and RP-HPLC profile of purified proteins </em></p><p>Gazzola et al., unpublished </p><p>21 </p><p>Identification by Nano LC-MS/MS </p><p><strong>band </strong></p><p>C 1-2 C 4 </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>sequence </strong></li><li style="flex:1"><strong>protein </strong></li></ul><p></p><p>PREDICTED: Vitis vinifera class IV chitinase (CHI4D), mRNA </p><p><strong>Class IV chitinase </strong>[<em>Vitis vinifera</em>] </p><p>LOC100232841, PREDICTED: Vitis vinifera VVTL1 (LOC100232841), mRNA </p><p><strong>VVTL1 </strong>[<em>Vitis vinifera</em>] </p><p>LOC100256970, PREDICTED: Vitis vinifera hypothetical protein LOC100256970 (LOC100256970), mRNA <br>C 6-7 α </p><p><strong>Vacuolar invertase 1</strong>, [<em>Vitis Vinifera</em>]. </p><p>LOC100256970, PREDICTED: Vitis vinifera hypothetical protein LOC100256970 (LOC100256970), mRNA <br>C 6-7 β </p><p><strong>Vacuolar invertase 1</strong>, [<em>Vitis vinifera</em>]. </p><p>PREDICTED: Vitis vinifera thaumatin-like protein (TL3), mRNA <br>C 6-7 γ </p><p><strong>Thaumatin-like protein </strong>[<em>Vitis vinifera</em>] </p><p>D 1-2-3- LOC100232841, PREDICTED: Vitis vinifera VVTL1 </p><p><strong>VVTL1 </strong>[<em>Vitis vinifera</em>]. </p><p></p><ul style="display: flex;"><li style="flex:1">4</li><li style="flex:1">(LOC100232841), mRNA </li></ul><p></p><ul style="display: flex;"><li style="flex:1">E 1-2-3 </li><li style="flex:1">Lipid transfer protein isoform 1 [Vitis vinifera] </li></ul><p></p><p><strong>Lipid Transfer Protein 1 </strong>[<em>Vitis vinifera</em>]. <strong>VVTL1 </strong>[<em>Vitis vinifera</em>]. </p><p>LOC100232841, PREDICTED: Vitis vinifera VVTL1 (LOC100232841), mRNA <br>H 4 I 1 <br>LOC100232841, PREDICTED: Vitis vinifera VVTL1 (LOC100232841), mRNA </p><p><strong>VVTL1 </strong>[<em>Vitis vinifera</em>]. </p><p>22 </p><p>Gazzola et al.2011, unpublished </p><p>How do the wine protein behave to form haze? </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>23 </p><p>Proteins and Haze formation </p><p>• 1. Protein <strong>denaturation </strong></p><p>– Limiting step </p><p>• 2. <strong>Interactions </strong>(?) • 3. Insoluble <strong>particles </strong></p><p>formation (invisible) <br>• 4. Aggregation </p><p></p><p><strong>Visible HAZE </strong></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>24 </p><p>Proteins and Haze formation </p><p>• <strong>1. Wine Protein denaturation </strong></p><p>Can be reversible </p><p>– <strong>Temperature </strong>(!) </p><p>– Other factors (?) </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>25 </p><p>Thermal stability of wine proteins </p><p><strong>Chitinase </strong><br><strong>TLP </strong></p><p>Repeated DSC scans of <strong>chitinase </strong>from Sauvignon blanc showing a melt </p><p>temperature of <strong>55 °C</strong>, <strong>no reversibility </strong></p><p>of thermal unfolding </p><p>Repeated DSC scans of <strong>thaumatin-like </strong></p><p><strong>protein </strong>from Semillon showing a melt </p><p>temperature of <strong>61 °C </strong>and some <strong>reversibility </strong>of thermal unfolding. </p><p>Falconer et al.; <em>J. Agric. Food Chem. </em><strong>2010, </strong>58, 975. </p><p>Copyright © 2009 American Chemical Society </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>26 </p><p>Haze formation at 30°C </p><p>Effect of incubation at <strong>30°C for 22 h </strong>on the </p><p>protein composition of wine. <br>(<strong>A</strong>) PAGE of proteins from Sauvignon blanc wine after 22 h at 30 °C. The wine was centrifuged and the obtained pellet washed with model wine. Proteins from 100 μL for control (before heating, C) and supernatant (after heating, S) and from 500 μL </p><p><strong>Chitinase </strong></p><p>of <strong>pellet (after heating, P) </strong>were loaded per </p><p>lane. </p><p>TLP </p><p>(<strong>B</strong>) Reverse phase (C8) HPLC chromatograms of unheated Sauvignon blanc wine (C) and </p><p><strong>supernatant </strong>after 22 h at 30 °C (S). </p><p> <strong>Chitinase is more sensitive than LTP </strong></p><p>Marangon et al; <em>J. Agric. Food Chem. </em><strong>2011, </strong>59, 733-740. </p><p>Copyright © 2010 American Chemical Society </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>27 </p><p>Chitinases and haze </p><p><strong>Wine Treatment with Chitin</strong> specific interaction with the chitin </p><p>binding domain of Chitinases </p><p>Proteins: <strong>- 29% </strong><br>Haze : <strong>- 80% </strong></p><p>(Bentonite: -90%) <br>(Bentonite: -100%) </p><p> <strong>Chitinase is strongly involved in wine hazing </strong></p><p><em>Vincenzi et al. (2005) Am. J. Enol. Vitic. 6:3:246 </em></p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>28 </p><p>Proteins and Haze formation </p><p>The wine proteins do not form haze in model wine, but only in real wines! </p><p></p><ul style="display: flex;"><li style="flex:1">model </li><li style="flex:1">real </li></ul><p></p><p><strong>2. interactions with other compounds </strong></p><p>• the “factor(s) X” </p><p>– Sulfate – Tannins </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p><p>29 </p><p>Proteins and Haze formation </p><p>• <strong>Sulfate </strong></p><p>(Pocock et al. <em>JAFC 2007, 55, 1799; </em>Marangon et al. <em>JAFC 2011, 59, 73) </em></p><p><strong>SO</strong><sub style="top: 0.435em;"><strong>4 </strong></sub>> HPO<sub style="top: 0.435em;">4 </sub>> acetate<sup style="top: -0.525em;">- </sup>> Cl<sup style="top: -0.525em;">- </sup>> NO<sub style="top: 0.435em;">3 </sub></p><p><strong>2- </strong></p><p></p><ul style="display: flex;"><li style="flex:1">2 - </li><li style="flex:1">-</li></ul><p></p><p><strong>Hofmeister series: </strong></p><p>• Remove water </p><p>• Promote <strong>Hydrophobic interactions </strong></p><p>Model wine </p><p>Effect of increasing <strong>sulfate </strong></p><p>concentration on the haze produced by heating wine proteins (150 mg/L) in model wine. </p><p>Effect of protein concentration and composition on haze </p><p>30 </p><p>formed in model wine. </p><p><strong>The wine proteins </strong></p><p><strong>Tarragona 2011 </strong></p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages38 Page
-
File Size-