The Linear Dilaton: from the Clockwork Mechanism to Its Supergravity Embedding

The Linear Dilaton: from the Clockwork Mechanism to Its Supergravity Embedding

The linear dilaton: from the clockwork mechanism to its supergravity embedding Chrysoula Markou August 30, 2019 SQS '19, Yerevan Chrysoula Markou The linear dilaton 1 / 19 Overview 1 The clockwork mechanism The clockwork scalar Motivation and basic references The clockwork graviton Continuum 2 Little String Theory Definition Geometry Phenomenology 3 Supergravity embedding Structure of N = 2, D = 5 Supergravity Effective supergravity Chrysoula Markou The linear dilaton 2 / 19 The clockwork mechanism The clockwork scalar Setup 1 massless scalar π(x), symmetry U(1) N+1 2 N+1 copies: πj(x), j = 0; 1;:::;N , symmetry U(1) (at least) 3 explicit breaking U(1)N+1 ! U(1) via a mass{mixing that involves near{neighbours only N N−1 1 X 1 X L = − @ π @µπ − m2 (π − qπ )2 + ::: 2 µ j j 2 j j+1 j=0 j=0 q treats the site j and the site j + 1 asymmetrically 1 1=q 1=q2 1=qN j = 0 j = 1 j = 2 j = N Chrysoula Markou The linear dilaton 3 / 19 The clockwork mechanism The clockwork scalar Eigenmodes π = Oa 1 N0 massless Goldstone a0, Oj0 = qj h (j+1)kπ i 2 jkπ massive Clockwork gears ak, Ojk = Nk q sin N+1 − sin N+1 now couple eg. topological term to the N{th site only ( N ) 1 µν 1 X k 1 µν πN GµνGe = a0 − (−) ak GµνGe f f0 fk k=1 N 1 f0=f ∼ q : exponential enhancement 3=2 2 fk=f ∼ N =k: mild N dependance Chrysoula Markou The linear dilaton 4 / 19 The clockwork mechanism Motivation and basic references the clockwork as a renormalizable scalar field theory: Choi and Im '15 Kaplan and Rattazzi '15 (see also natural inflation and relaxion models) the clockwork as an effective low{energy field theory: Giudice and McCullough '16 Recipe: N + 1 of particle P whose masslessness is protected by symmetry S & explicit breaking via near{neighbour interactions Known examples for the following spins: 0, 1=2, 1, 2 growing pheno literature (LHC signatures, inflation, . ) group theory of the clockwork: Craig, Garcia Garcia, Sutherland '17 Giudice and McCullough '17 Chrysoula Markou The linear dilaton 5 / 19 The clockwork mechanism The clockwork graviton 1 @ the linear level: use Fierz{Pauli 1939 mass term N−1 " # 1 X 2 L = − m2 (hµν − qhµν )2 − η (hµν − qhµν ) int 2 j j+1 µν j j+1 j=0 Giudice and McCullough '16 2 @ the nonlinear level: use Hinterbichler and Rosen '12 interaction Z X a b c d SV = − Tijkl "abcd (Ei) ^ (Ej) ^ (Ek) ^ (El) i;j;k;l Niedermann, Padilla, Saffin '18 µ 1 µ in both cases: asymmetric gear shifts ξi = qi ξ Chrysoula Markou The linear dilaton 6 / 19 The clockwork mechanism Continuum Setup 1 discrete and finite lattice dimension ! continuous y on S =Z2 Giudice and McCullough '16 1 Consider real scalar φ in 5D with metric Ansatz: ds2 = X(jyj)dx2 + Y (jyj)dy2 2 Discretize: y ! yj = ja ; φ, X; Y ! φj;Xj;Yj N N−1 1=2 1=4 !2 1 X 1 X Xj Xj Yj L = − @ φ @µφ − φ − φ µ j j 2 j 1=2 1=4 j+1 2 2 a Yj j=0 j=0 Xj+1Yj+1 − 4 kπR j ka 3 Identify: Xj ∼ Yj ∼ e 3 N with q = e Chrysoula Markou The linear dilaton 7 / 19 The clockwork mechanism Continuum Eigenmodes −kjyj 1 zero{mode 0 ∼ e ! njyj njyj 2 kR Kaluza{Klein excitations n ∼ n sin R + cos R now couple eg. topological term to y = 0 only (flipped k sign for pheno reasons) Z ( N ) 1 µν 1 ^ X 1 ^ µν dy δ(y) φ GµνGe = φ0 + φn GµνGe f f f 0 n=1 n p kπR 1 f0=f ∼ e = kπR: exponential enhancement 2 fn ∼ f: roughly equal Chrysoula Markou The linear dilaton 8 / 19 The clockwork mechanism Continuum Origin and comparison Continuum clockwork 2 4 kjyj 2 2 5D metric: ds = e 3 (dx + dy ) 2 2 n 2 KK spectrum: mn = k + R ) precisely those of the 5D toy model for the holographic dual of 6D Little String Theory as we will see now! Discretize 5th dimension of other models: large extra dimensions: no warping and no \clockworking" Randall{Sundrum: warping and \clockworking" but @ simple one{parameter deformation from the clockwork to Randall{Sundrum to explain eg. hierarchy, need only O(10) sites and q ∼ 4 Chrysoula Markou The linear dilaton 9 / 19 Little String Theory Definition there exist two inequivalent limits of string theory: 1 E << mS: low{energy limit 2 gS ! 0: \little string theories" Berkooz, Rozali, Seiberg '97, Seiberg '97, . simple example of LST: take gS ! 0 for a stack of NNS5{branes in type IIB 1 mS and N are the only parameters 2 bulk dynamics decouple Properties of LST 1 non{gravitational, since MP l ! 1 as gS ! 0 2 non{local, eg. Hagedorn density of states at high energies, T{duality 3 1 2 interacting, with 2 = mS gN Chrysoula Markou The linear dilaton 10 / 19 Little String Theory Geometry 5;1 3 \holographic" dual of 6D LST: string theory on IR × IRy × SN Aharony, Berkooz, Kutasov, Seiberg '98 infinite throat connected to asymptotically flat spacetime linear dilaton Φ = − pmS y N compactify y on interval (therby treating strong coupling problem and obtaining a large but finite MP l in the weak coupling regime): cigar{like geometry, Antoniadis, Dimopoulos, Giveon '01 Chrysoula Markou The linear dilaton 11 / 19 Little String Theory Phenomenology 5D graviton{dilaton toy model for cigar: Antoniadis, Arvanitaki, Dimopoulos, Giveon '11 Φ − 3=2 −1 M 3 2 e LLST = e 5 M5 R + (rΦ) − Λ + branes impose linear dilaton background Φ = αjyj: 2 − 2 αjyj 2 2 background metric: ds = e 3 (dx + dy ) 2 2 KK spectrum: m2 = α + nπ n 2 rc ) same as continuum clockwork! supergravity embedding Kehagias, Riotto '17, Antoniadis, Delgado, CM, Pokorski '17 Chrysoula Markou The linear dilaton 12 / 19 Supergravity embedding Structure of N = 2, D = 5 Supergravity N = 2, D = 5 Supergravity m i 0 pure supergravity multiplet: (eM ; M ;AM ) i 1 vector multiplet: (φ; λ ;AM ) m i I a x Maxwell{Einstein supergravity: (eM ; M ;AM ; λi ; φ ) 1 fφxg: coordinates of M 2 a fλi g: tangent space group SO(n) Lagrangian: −1 1 h i MNP i 1 I MNJ e LME = 2κ2 R(!) − M Γ DN P i − 4 GIJ FMN F 1 ia = ab ab = x b 1 x M y − 2 λ Dδ + Ωx @φ λi − 2 gxy(@M φ )(@ φ ) i ia M N a x 1 a ia M ΛP I − 2 λ Γ Γ Mi fx @N φ + 4 hI λ Γ Γ Mi FΛP ia −1 + iκ Φ λ ΓMN λb F I + κep C MNP ΣΛF I F J AK 4 Iab i MN 6 6 IJK MN P Σ Λ i Mi − 3pi h ΓMNP Σ F + 2 N F + ::: 8κ 6 I M Ni P Σ i MN G¨unaydin{Sierra{Townsend '84 Chrysoula Markou The linear dilaton 13 / 19 Supergravity embedding Structure of N = 2, D = 5 Supergravity Constraints 1 Algebraic: I I I J hxhI = hIxh = 0 ; hxhy GIJ = gxy x y x GIJ = hI hJ + hI hJ gyx = hI hJ + hI hJx I I y y h hI = 1 ;h xhI = δx I I ) h GIJ = hJ ; hxGIJ = hJx 2 Differential: q 2 I q 2 I hI;x = 3 hIx ; h;x = − 3 hx q 2 z I q 2 I Iz hIx;y = 3 gxyhI + TxyzhI ; hx;y = − 3 gxyh + Txyzh Chrysoula Markou The linear dilaton 14 / 19 Supergravity embedding Structure of N = 2, D = 5 Supergravity Embedding E with coordinates XI = XI (φx; N ) hypersurfaces Mk defined by ln N = k with normal vectors nI = @I ln N orthonormality relations: 3 XI n = 0 ; β2 XI X;y = δy ;x I 2 ;x I x ! I ! I ) identify: hI = αnI ; h = βX can also show that: 3 I J K N = β CIJK X X X 3 I J K M: special case k = 0 ) β CIJK X X X = 1 Chrysoula Markou The linear dilaton 15 / 19 Supergravity embedding Structure of N = 2, D = 5 Supergravity Gauging I gauge U(1) subgroup of SU(2) w.r.t. AM = υI AM new Lagrangian terms: p −1 0 g2 i 6 g i MN j e L = − κ4 P − 8 κ3 M Γ N δij P0 ia ia − p1 g λ ΓM j δ P + pi g λ λjbδ P 2 κ2 M ij a 2 6 κ ij ab new terms in the fermion transformations: δ0 = ip gP Γ δjk Mi 2κ 6 0 M ji k δ0λa = 1p gP a δjk i κ2 2 ji k algebraic and differential constraints G¨unaydin{Sierra{Townsend '84, '85 Chrysoula Markou The linear dilaton 16 / 19 Supergravity embedding Effective supergravity Embedding use a U(1) gauging of N = 2, D = 5 Maxwell{Einstein supergravity with one vector multiplet Ansatz: N = st2 + at3 ;X0 ≡ s ; X1 = t Klemm, Lerche, Mayr '95, Antoniadis, Ferrara, Taylor, '95 calculate potential: A 1 P = −3A P t2 + B P 4 P t p 3 2 2 redefine 3 ln t = Φ, set 4 g AP = −Λ ;BP = 0 2 −1 1 1 M p Φ ) e L = R − (@ Φ)(@ Φ) − e 3 Λ LST 2 2 M Chrysoula Markou The linear dilaton 17 / 19 Supergravity embedding Effective supergravity Partial breaking Φ = Cy, fine–tuning condition: C = ± gAp P 2 fermion transformations: δ = pi Γ iCΓ5 + gAp P " δjk e µi 2 3 µ i 2 ji k 1 1 p Cy gA δλ = − e 3 iCΓ5 + p P " δjk e i 2 i 2 ji k so that 5 δe λ1 − iΓ λ2 = 0 5 5 δe λ1 + iΓ λ2 ∼ 2 − iΓ 1 ) partial supersymmetry breaking three free parameters: g; υ0; υ1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us