Large scale addressing and routing mechanisms for highly mobile networks of networks Sofiane Imadali To cite this version: Sofiane Imadali. Large scale addressing and routing mechanisms for highly mobile networks ofnet- works. Other. Université Paris Sud - Paris XI, 2015. English. NNT : 2015PA112049. tel-01180150 HAL Id: tel-01180150 https://tel.archives-ouvertes.fr/tel-01180150 Submitted on 24 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE PARIS-SUD ÉCOLE DOCTORALE : STITS DIASI, LIST, Laboratoire des Système Communicants (LSC) THÈSE DE DOCTORAT Discipline: Sciences de l'information et de la communication soutenue le 02/04/2015 par Sofiane IMADALI ALGORITHMES D'ADRESSAGE ET ROUTAGE POUR DES RÉSEAUX FORTEMENT MOBILES À GRANDE ÉCHELLE Directeur de thèse : Véronique Vèque Professeur à l’université de Paris-Sud Encadrant CEA : Alexandre Petrescu Ingénieur-chercheur au CEA-Saclay Composition du jury : Rapporteurs : Yacine Ghamri-Doudane Professeur à l’université de La Rochelle Jérome Haerri Maitre de conférences, HDR à Eurecom Président du jury : Samir Tohme Professeur à l’université de Versailles (UVSQ) Examinateurs : Anthony Busson Professeur à l’université de Lyon 1 Anne Fladenmuller Maitre de conférences, HDR Université Paris 6 (UPMC) Abstract After successfully connecting machines and people later (world wide web), the new era of In- ternet is about connecting things. Due to increasing demands in terms of addresses, mobility, scalability, security and other new unattended challenges, the evolution of current Internet archi- tecture is subject to major debate worldwide. The Internet Architecture Board (IAB) workshop on Routing and Addressing report described the serious scalability problems faced by large backbone operators in terms of routing and addressing, illustrated by the unsustainable growth of the Default Free Zone (DFZ) routing tables. Some proposals tackled the scalability and IP semantics overload issues with two different approaches: evolutionary approach (backward com- patibility) or a revolutionary approach. Several design objectives (technical or high-level) guided researchers in their proposals. Mobility is definitely one of the main challenges. Inter-Vehicle Communication (IVC) attracts considerable attention from the research com- munity and the industry for its potential in providing Intelligent Transportation Systems (ITS) and passengers services. Vehicular Ad-Hoc Networks (VANETs) are emerging as a class of wire- less network, formed between moving vehicles equipped with wireless interfaces (cellular and WiFi) employing heterogeneous communication systems. A VANET is a form of mobile ad-hoc network that provides IVC among nearby vehicles and may involve the use of a nearby fixed equipment on the roadside. The impact of Internet-based vehicular services (infotainment) are quickly developing. Some of these applications, driver assistance services or traffic reports, have been there for a while. But market-enabling applications may also be an argument in favor of a more convenient journey. Such use cases are viewed as a motivation to further adoption of the ITS standards developed within IEEE, ETSI, and ISO. This thesis focuses on applying Future Internet paradigm to vehicle-to-Internet communica- tions in an attempt to define the solution space of Future Vehicular Internet. We first introduce two possible vehicle-to-Internet use cases and great enablers for IP based services : eHealth and Fully-electric Vehicles. We show how to integrate those use cases into IPv6 enabled networks. We further focus on the mobility architectures and determine the fundamental components of a mobility architecture. We then classify those approaches into centralized and distributed to show the current trends in terms of network mobility extension, an essential component to vehicular networking. We eventually analyze the performance of these proposals. In order to define an identifier namespace for vehicular communications, we introduce the Vehicle Identification Numbers are possible candidates. We then propose a conversion algorithm that preserves the VIN characteristics while mapping it onto usable IPv6 networking objects (ad- dresses, prefixes, and Mobile Node Identifiers). We make use of this result to extend LISP-MN protocol with the support of our VIN6 addressing architecture. We also apply those results to group IP-based communications, when the cluster head is in charge of a group of followers. Keywords: Future Internet, Future Vehicular Internet, Addressing architecture, Mobility management protocols, Vehicle Identification Number, Vehicle-to-Internet communications, Analytical Model, Performance evaluation. Acknowledgments CONTENTS CONTENTS Contents 1 Introduction 1 1.1 General context..................................... 1 1.2 Research challenges................................... 2 1.2.1 Future Vehicular Internet architecture design ................ 3 1.2.2 Efficient group mobility support........................ 3 1.2.3 IVC fast IP configuration mechanisms.................... 3 1.2.4 Impact of market penetration......................... 3 1.3 Contributions...................................... 3 1.4 Publications....................................... 4 1.4.1 Journals..................................... 4 1.4.2 Confrences ................................... 4 1.4.3 Patents ..................................... 5 1.4.4 Internet drafts ................................. 5 1.5 Dissertation outline................................... 5 2 Background and Related Work7 2.1 Evolution of IP..................................... 8 2.1.1 Fundamental building blocks ......................... 8 2.1.1.1 End-to-End Argument........................ 8 2.1.1.2 Network of interconnected networks................ 9 2.1.1.3 Packets as the basic unit of data exchange............. 10 2.1.1.4 Layering ............................... 10 2.1.2 The good, the bad and the ugly: Overview of IP properties . 12 2.1.2.1 Early design consequences...................... 12 2.1.2.2 IP as an Identifier.......................... 13 2.1.2.3 Hierarchical design properties.................... 13 2.1.3 The wind of change: Locator/Identifier split................. 14 2.1.3.1 Problem statement of Internet growth............... 14 2.1.3.2 Discussion and directions...................... 16 2.1.4 Evolutionary approaches............................ 16 2.1.4.1 Host-based approaches........................ 16 2.1.4.1.a Host identity Protocol (HIP)................ 16 2.1.4.1.b Shim6............................. 18 2.1.4.1.c MILSA............................ 19 2.1.4.1.d Other host-based approaches................ 22 2.1.4.2 Network-based approaches ..................... 23 2.1.4.2.a Locator/ID Separation Protocol.............. 23 2.1.4.2.b Global, Site, and End-system address elements (GSE).. 25 2.1.4.2.c Other network-based approaches.............. 26 III CONTENTS CONTENTS 2.1.5 Revolutionary approaches........................... 27 2.1.5.1 Content-Centric Networking (a.k.a. Networking Named Content) 27 2.1.5.2 ROFL: Routing on Flat Labels................... 29 2.1.5.3 NIRA: A New Inter-Domain Routing Architecture . 30 2.1.5.4 MobilityFirst architecture...................... 30 2.1.5.5 More clean-slate design approaches................. 32 2.1.6 Discussion.................................... 33 2.2 Vehicle-to-Internet communications: requirements and architectures . 39 2.2.1 Overview of communication technologies................... 39 2.2.1.1 Cellular system............................ 40 2.2.1.2 Bluetooth............................... 40 2.2.1.3 WLAN systems ........................... 41 2.2.2 Applications and requirements ........................ 42 2.2.2.1 Road safety and traffic efficiency applications........... 42 2.2.2.2 Infotainment applications...................... 43 2.2.3 Vehicle-to-Internet communication ...................... 43 2.2.3.1 Mobility management in IP-based infrastructures......... 43 2.2.3.2 IPv6 in vehicular networking.................... 45 2.2.4 Vehicle-to-Internet communications...................... 45 2.2.5 Standards landscape.............................. 47 2.3 Conclusion........................................ 48 3 Use cases 50 3.1 IPv6 communication requirements .......................... 53 3.1.1 Basic IP parameters .............................. 53 3.1.2 Routing..................................... 54 3.2 eHealth in ITS ..................................... 54 3.2.1 Related work.................................. 54 3.2.2 eHealth scenario overview........................... 56 3.2.3 Auto-configuration Protocol.......................... 58 3.2.4 Prototype implementation........................... 59 3.2.4.1 Hardware specifications....................... 59 3.2.4.2 Platform Integration......................... 61 3.3 Fully Electric Vehicles ................................. 63 3.3.1 Related work.................................. 64 3.3.2 IP-based services for eMobility in ITS .................... 65 3.3.2.1 Fully-Electric Vehicle charging ..................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages181 Page
-
File Size-