Classical Strings and Membranes in the Ads/CFT Correspondence

Classical Strings and Membranes in the Ads/CFT Correspondence

<p>Classical Strings and Membranes in the AdS/CFT Correspondence </p><p>GEORGIOS LINARDOPOULOS </p><p>Faculty of Physics, <br>Department of Nuclear and Particle Physics National and Kapodistrian University of Athens </p><p>and <br>Institute of Nuclear and Particle Physics <br>National Center for Scientific Research "Demokritos" </p><p>Dissertation submitted for the Degree of <br>Doctor of Philosophy at the National and Kapodistrian University of Athens </p><p>June 2015 </p><p>Doctoral Committee </p><p>Supervisor </p><p>Emmanuel Floratos Professor Emer., N.K.U.A. </p><p>Co-Supervisor </p><p>Minos Axenides Res. Director, N.C.S.R., "Demokritos" </p><p>Supervising Committee Member </p><p>Nikolaos Tetradis Professor, N.K.U.A. </p><p>Thesis Defense Committee </p><p>Ioannis Bakas Professor, N.T.U.A. </p><p>Georgios Diamandis Assoc. Professor, N.K.U.A. </p><p>Athanasios Lahanas Professor Emer., N.K.U.A. </p><p>Konstantinos Sfetsos Professor, N.K.U.A. </p><p>i</p><p>This thesis is dedicated to my parents </p><p>iii </p><p>Acknowledgements </p><p>This doctoral dissertation is based on the research that took place during the years 2012–2015 at the Institute of Nuclear &amp; Particle Physics of the National Center for Scientific Research "Demokritos" and the Department of Nuclear &amp; Particle Physics at the Physics Faculty of the National and Kapodistrian University of Athens. </p><p>I had the privilege to have professors Emmanuel Floratos (principal supervisor), Minos Axenides (co-supervisor) and Nikolaos Tetradis as the 3-member doctoral committee that supervised my PhD. I would like to thank them for the fruitful cooperation we had, their help and their guidance. </p><p>I feel deeply grateful to my teacher Emmanuel Floratos for everything that he has taught me. It is extremely difficult for me to imagine a better and kinder supervisor. I thank him for his advices, his generosity and his love.&nbsp;I am deeply indebted to Minos Axenides for all his support, encouragement, help, time and advice. I would also like to thank professor Nikolaos Tetradis who was always available to help and advise me. </p><p>I would also like to express my gratitude to the remaining members of the 7-member doctoral committee, professors Ioannis Bakas, Georgios Diamantis, Athanasios Lahanas and Konstantinos Sfetsos.&nbsp;During the PhD, I had the luck to have my research at N.C.S.R. "Demokritos" financially supported by the General Secretariat for Research and Technology of Greece and from the European Regional Development Fund MIS- 448332-ORASY (NSRF 2007–13 ACTION, KRIPIS). </p><p>I am very thankful to Dr. George Georgiou who has been my closest collaborator and friend during the PhD and has significantly contributed to its completion. I would like to thank professor Stam Nicolis for many exciting discussions and his encouragement. </p><p>Finally, I would like to thank all the members of my family and especially my parents to which I dedicate this doctoral dissertation. </p><p>v</p><p>Prolegomena </p><p>This doctoral dissertation is based on the publications [1, 2, 3, 4]: • G. Linardopoulos, Large-Spin Expansions of Giant Magnons, [<a href="/goto?url=http://lanl.arxiv.org/abs/1502.01630" target="_blank">arXiv:1502.01630</a>]. To appear in Proceedings of Science, PoS (CORFU2014) 154 </p><p>• E. Floratos, G. Linardopoulos, Large-Spin and Large-Winding Expansions of Giant Magnons and </p><p>Single Spikes, Nucl.Phys. B897 (2015) 229, [<a href="/goto?url=http://lanl.arxiv.org/abs/1406.0796" target="_blank">arXiv:1406.0796</a>] <br>• E. Floratos, G. Georgiou, G. Linardopoulos, Large-Spin Expansions of GKP Strings, JHEP 03 <br>(2014) 018, [<a href="/goto?url=http://lanl.arxiv.org/abs/1311.5800" target="_blank">arXiv:1311.5800</a>] </p><p>• M. Axenides, E. Floratos, G. Linardopoulos, Stringy Membranes in AdS/CFT, JHEP 08 (2013) </p><p>089, [<a href="/goto?url=http://lanl.arxiv.org/abs/1306.0220" target="_blank">arXiv:1306.0220</a>], </p><p>as well as the following talks: • Large-Spin Expansions of Giant Magnons. Workshop&nbsp;on Quantum Fields and Strings.&nbsp;14th Hellenic School and Workshops on Elementary Particle Physics &amp; Gravity.&nbsp;Corfu Summer Institute, </p><p>17/09/2014, [<a href="/goto?url=http://www.physics.ntua.gr/corfu2014/lectures.html" target="_blank">http://www.physics.ntua.gr/corfu2014/lectures.html</a>] </p><p>• Dispersion Relation of GKP Strings. Summer School on String Theory and Holography &amp; Mathematica Summer School on Theoretical Physics, 6th Edition. Departamento de Física e Astronomia of Faculdade de Ciências da Universidade do Porto (FCUP), 24/07/2014, [<a href="/goto?url=http://msstp.org/?q=node/294" target="_blank">http://msstp.org/?q= </a></p><p><a href="/goto?url=http://msstp.org/?q=node/294" target="_blank">node/294</a>] </p><p>• Stringy Membranes in AdS/CFT. “Holography 2013:&nbsp;Gauge/Gravity Duality and Strongly Correlated Systems”.&nbsp;Pohang, S. Korea, June 13 – 22.&nbsp;APCTP, POSTECH, 15/06/2013, [<a href="/goto?url=https://www.apctp.org/plan.php/holography2013/660" target="_blank">https: </a></p><p><a href="/goto?url=https://www.apctp.org/plan.php/holography2013/660" target="_blank">//www.apctp.org/plan.php/holography2013/660</a>] </p><p>• Rotating Strings and Membranes in AdS/CFT. “Foundations of Quantum Mechanics and Relativistic Spacetime”. Annual workshop of Working Group 3, “Quantum Theory Meets Relativity”, of the COST Action MP1006, “Fundamental Problems in Quantum Physics”.&nbsp;National &amp; Kapodistrian University of Athens, 26/09/2012, [<a href="/goto?url=http://www.pwallden.gr/foundations.asp" target="_blank">http://www.pwallden.gr/foundations.asp</a>]. </p><p>The author’s research at N.C.S.R. "Demokritos" is supported by the General Secretariat for Research and Technology of Greece and from the European Regional Development Fund MIS-448332- ORASY (NSRF 2007–13 ACTION, KRIPIS). </p><p>vii </p><p>Abstract </p><p>In its strongest version, the AdS/CFT conjecture states that N = 4, su (N<sub style="top: 0.1363em;">c</sub>) super Yang-Mills (SYM) theory is equal to type IIB string theory on AdS<sub style="top: 0.1364em;">5 </sub>× S<sup style="top: -0.3632em;">5</sup>. It&nbsp;is by far the most important equation of contemporary theoretical physics, a sort of a "harmonic oscillator" for both the quantum theory of gravity and gauge theories. It goes without saying that it is imperative to fully understand its limits of validity and thoroughly investigate its implications.&nbsp;In particular, it would be desirable to solve the theory, i.e. to be able to compute all of its observables. </p><p>One of the most important observables of AdS/CFT is its spectrum. According to the AdS/CFT <br>"dictionary", the spectrum of the theory comprises the energies of its string states, each of which must be equal to the scaling dimensions of its dual gauge theory operator. The full spectral problem of AdS/CFT is solved by integrability, in the sense that integrability provides the full set of algebraic equations that determine it. Integrability methods are however severely limited in the regime of long, strongly coupled operators, such as those that are dual to the Gubser-Klebanov-Polyakov (GKP) strings, giant magnons and single spike strings. </p><p>In this thesis we study classical strings and branes in the context of the AdS/CFT correspondence. <br>Our goal is twofold: (1) develop methods for computing the AdS<sub style="top: 0.1363em;">5</sub>/CFT<sub style="top: 0.1363em;">4 </sub>spectrum in the case of long, strongly coupled operators, by using classical strings and (2) understand the role of classical membranes in AdS/CFT by investigating their stringy limits. </p><p>With regard to the first objective, we compute the classical spectra of long rotating GKP strings, giant magnons and single spikes. The conserved linear and angular momenta of these string configurations, that live either in AdS<sub style="top: 0.1364em;">3 </sub>or R×S<sup style="top: -0.3632em;">2</sup>, are known in parametric form in terms of the strings’ linear and angular velocities.&nbsp;We eliminate the linear and angular velocities from the expressions that give the energy of the strings, in favor of the strings’ conserved charges of linear and angular momenta. This way, we find all the leading, subleading and next-to-next-to-leading terms in the dispersion relations of the aforementioned string configurations.&nbsp;Our results are expressed in closed forms with Lambert’s W-function. </p><p>For the second objective we introduce and study "stringy membranes", a new class of membranes that live in AdS<sub style="top: 0.185em;">4/7 </sub>× S<sup style="top: -0.3632em;">7/4 </sup>or AdS<sub style="top: 0.1364em;">4 </sub>× S<sup style="top: -0.3632em;">7</sup>/Z<sub style="top: 0.1482em;">k </sub>and have the same equations of motion, constraints and conserved charges with strings that live in an appropriate subset of AdS<sub style="top: 0.1363em;">5</sub>. Stringy&nbsp;membranes can be constructed whenever the target spacetime contains a compact submanifold, by identifying one of the submanifold’s compact coordinates with one of the membrane worldvolume coordinates. For the stringy membranes that reproduce the pulsating and rotating GKP strings in AdS, we find that the spectrum of their transverse quadratic fluctuations displays a multiple band/gap structure governed by the Lamé equation.&nbsp;Conversely, string excitations are represented by a single-band/single-gap Lamé pattern. These findings confirm the picture that we have of membranes as collective excitations of some stringy counterparts. </p><p>ix </p><p>Contents </p><p>1 Introduction </p><p>6</p><p>1.1 Overview .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;10 </p><p></p><ul style="display: flex;"><li style="flex:1">I</li><li style="flex:1">Introduction to AdS/CFT </li></ul><p></p><p>11 </p><p>2 Gauge/Gravity&nbsp;Duality </p><p>11 </p><p>2.1 Large-N<sub style="top: 0.1363em;">c </sub>Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;11 2.2 Holographic&nbsp;Principle .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;14 2.3 Holographic&nbsp;Renormalization Group&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;15 </p><p>3 AdS/CFT&nbsp;Correspondence </p><p>18 </p><p>3.1 Open&nbsp;String Description&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;18 3.2 Closed&nbsp;String Description&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;19 3.3 N = 4 Super Yang-Mills&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;19 3.4 IIB&nbsp;String Theory on AdS<sub style="top: 0.1363em;">5</sub>×S<sup style="top: -0.3299em;">5 </sup>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;20 3.5 Parameter&nbsp;Matching .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;21 3.6 The&nbsp;BMN Sector&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;22 3.7 Maldacena&nbsp;Dualities .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;23 3.8 ABJM&nbsp;Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;24 3.9 Field/Operator&nbsp;Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;24 3.10 Testing&nbsp;the AdS<sub style="top: 0.1363em;">5</sub>/CFT<sub style="top: 0.1363em;">4 </sub>Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;26 <br>3.10.1 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;27 3.10.2 Spectra&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;27 3.10.3 Correlation&nbsp;Functions .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;29 3.10.4 Anomalies,&nbsp;Moduli Spaces, etc.&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;30 </p><p>4 AdS/CFT&nbsp;Integrability </p><p>31 </p><p>4.1 Classical&nbsp;&amp; Quantum Integrability&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 <br>4.1.1 Classical&nbsp;Integrability .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 4.1.2 Quantum&nbsp;Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 <br>4.2 Integrability&nbsp;in AdS<sub style="top: 0.1363em;">5</sub>/CFT<sub style="top: 0.1363em;">4 </sub>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;32 4.3 Integrability&nbsp;in the su (2) Sector .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;33 <br>4.3.1 Coordinate&nbsp;Bethe Ansatz&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;34 4.3.2 Asymptotic&nbsp;Bethe Ansatz&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;37 </p><p>II Spinning&nbsp;Strings in AdS<sub style="top: 0.1494em;">5 </sub>× S<sup style="top: -0.4247em;">5 </sup></p><p>39 </p><p>5 Introduction&nbsp;and Motivation </p><p>39 </p><p>5.1 Classical&nbsp;Bosonic Strings in AdS<sub style="top: 0.1364em;">5 </sub>× S<sup style="top: -0.3632em;">5 </sup>. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;40 5.2 Pohlmeyer&nbsp;Reduction .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;42 5.3 Neumann-Rosochatius&nbsp;Reduction in R × S<sup style="top: -0.3633em;">5 </sup>. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;43 </p><p>6 The&nbsp;Gubser-Klebanov-Polyakov (GKP) String </p><p>45 </p><p>6.1 Rotating&nbsp;AdS<sub style="top: 0.1364em;">3 </sub>GKP String&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;48 <br>6.1.1 Short&nbsp;Strings .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;51 6.1.2 Long&nbsp;Strings .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;52 </p><p>1<br>6.1.3 Short-Long&nbsp;Strings Duality&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;53 <br>6.2 Rotating&nbsp;R × S<sup style="top: -0.3632em;">2 </sup>GKP String&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;54 <br>6.2.1 Short&nbsp;Folded Strings&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;57 6.2.2 Long&nbsp;Folded Strings&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;58 6.2.3 Slow&nbsp;Circular Strings .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;59 6.2.4 Fast&nbsp;Circular Strings&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;60 6.2.5 Short-Long&nbsp;Strings Duality&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;60 <br>6.3 Pulsating&nbsp;AdS<sub style="top: 0.1364em;">3 </sub>GKP String&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;61 <br>6.3.1 Semiclassical&nbsp;Quantization .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;62 </p><p>7 Dispersion&nbsp;Relations of GKP Strings </p><p>66 </p><p>7.1 Rotating&nbsp;R × S<sup style="top: -0.3632em;">2 </sup>GKP String&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;70 <br>7.1.1 Inverse&nbsp;Spin Function&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;70 7.1.2 Anomalous&nbsp;Dimensions .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;72 7.1.3 Leading&nbsp;Terms .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;74 7.1.4 Next-to-Leading&nbsp;Terms .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;75 7.1.5 NNL&nbsp;Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;78 7.1.6 Fast&nbsp;Circular Strings&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;79 <br>7.2 Rotating&nbsp;AdS<sub style="top: 0.1363em;">3 </sub>GKP String&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;80 <br>7.2.1 Inverse&nbsp;Spin Function&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;80 7.2.2 Anomalous&nbsp;Dimensions .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;82 7.2.3 Leading&nbsp;Terms .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;84 7.2.4 Next-to-Leading&nbsp;Terms .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;86 7.2.5 NNL&nbsp;Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;86 <br>7.3 Reciprocity&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;88 </p><p>8 Infinite-Size&nbsp;Giant Magnons and Single Spikes </p><p>91 </p><p>8.1 The&nbsp;Hofman-Maldacena (HM) Giant Magnon&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;94 8.2 Infinite-Momentum&nbsp;Single Spikes&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;96 8.3 Bound&nbsp;States &amp; Scattering .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;98 <br>8.3.1 Scattering&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;98 8.3.2 Bound&nbsp;States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;100 </p><p>9 Finite-Size&nbsp;Giant Magnons and Single Spikes </p><p>102 </p><p>9.1 Giant&nbsp;Magnon: Elementary Region&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;103 9.2 Giant&nbsp;Magnon: Doubled Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;104 9.3 Single&nbsp;Spike: Elementary Region&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;106 9.4 Single&nbsp;Spike: Doubled Region&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;108 9.5 Symmetries&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;109 </p><p>10 Dispersion Relations of Giant Magnons and Single Spikes </p><p>111 </p><p>10.1 Giant&nbsp;Magnon: Elementary Region&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;116 <br>10.1.1 Inverse&nbsp;Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;117 10.1.2 Inverse&nbsp;Spin Function&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;118 10.1.3 Dispersion&nbsp;Relation .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;120 <br>10.2 Giant&nbsp;Magnon: Doubled Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;121 10.3 Single&nbsp;Spike: Elementary Region&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;122 10.4 Single&nbsp;Spike: Doubled Region&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;122 </p><p>2</p><p>11 Part II Summary and Discussion </p><p>124 </p><p>11.1 GKP&nbsp;Strings .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;124 11.2 Giant&nbsp;Magnons &amp; Single Spikes&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;126 </p><p>III Rudiments&nbsp;of p-Branes &amp; M-Theory </p><p>128 </p><p>12 Generalities </p><p>128 </p><p>12.1 Uses&nbsp;of Extended Objects&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;128 <br>12.1.1 Description&nbsp;of Elementary Particles .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;129 12.1.2 Study&nbsp;of the Strong Interaction&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;129 12.1.3 Generalization&nbsp;of Superstrings and Superparticles . . . . . . . . . . . . . . . . .&nbsp;129 12.1.4 The&nbsp;Membrane Paradigm of Black Holes . . . . . . . . . . . . . . . . . . . . . .&nbsp;130 12.1.5 M-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;130 12.1.6 AdS/CFT&nbsp;Correspondence .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;131 12.1.7 Brane&nbsp;World Cosmology&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;132 <br>12.2 Towards&nbsp;M(embrane) Theory&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;132 <br>12.2.1 Membrane&nbsp;Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;132 12.2.2 Anomalies&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;133 12.2.3 Ghosts&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;133 12.2.4 Non-Renormalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;133 12.2.5 Integrability&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;133 12.2.6 Quantization&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;134 12.2.7 Membrane&nbsp;Interactions &amp; Perturbation Theory.&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;134 </p><p>13 Introduction to Membranes </p><p>135 </p><p>13.1 Bosonic&nbsp;Membranes .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;135 <br>13.1.1 Dirac-Nambu-Goto&nbsp;Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;135 13.1.2 Polyakov&nbsp;Action .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;135 13.1.3 Gauge-Fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;137 13.1.4 Membranes&nbsp;in Flat Spacetimes&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;138 <br>13.2 Bosonic&nbsp;p-Branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;139 <br>13.2.1 Volume-Preserving&nbsp;Diffeomorphisms .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;140 <br>13.3 Supermembranes&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;140 <br>13.3.1 11-Dimensional&nbsp;Supergravity .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;142 <br>13.4 M(atrix)&nbsp;Theory .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;143 <br>13.4.1 Matrix-Regularized&nbsp;Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;143 13.4.2 The&nbsp;Matrix Theory Conjecture&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;144 13.4.3 Matrix&nbsp;Theory in Curved Backgrounds .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;145 </p><p>IV Rotating&nbsp;Membranes </p><p>147 </p><p>147 149 150 </p><p>14 Introduction and Motivation 15 Spinning Membranes in AdS<sub style="top: 0.1364em;">7 </sub>× S<sup style="top: -0.3644em;">4 </sup>16 Spinning Membranes as Spinning Strings </p><p>16.1 Stringy&nbsp;Membranes in AdS<sub style="top: 0.1363em;">7 </sub>× S<sup style="top: -0.3632em;">4 </sup>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;150 16.2 Stringy&nbsp;Membranes in AdS<sub style="top: 0.1364em;">4 </sub>× S<sup style="top: -0.3632em;">7 </sup>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;154 16.3 Stringy&nbsp;Membranes in AdS<sub style="top: 0.1364em;">4 </sub>× S<sup style="top: -0.3632em;">7</sup>/Z<sub style="top: 0.1482em;">k </sub>. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;155 </p><p>3</p><p>17 Membrane Fluctuations </p><p>155 </p><p>17.1 Rotating&nbsp;Stringy Membranes&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;160 17.2 Pulsating&nbsp;Stringy Membranes&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;161 </p><p>18 Part IV Summary and Discussion </p><p>164 </p><p></p><ul style="display: flex;"><li style="flex:1">V</li><li style="flex:1">Appendixes </li></ul><p></p><p>167 </p><p>A Anti-de&nbsp;Sitter Space </p><p>167 </p><p>A.1 Global&nbsp;Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;169 A.2 "Sausage"&nbsp;Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;170 A.3 Horospheric/Poincaré&nbsp;Coordinates .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;171 A.4 Stereographic&nbsp;Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;173 A.5 "Static"&nbsp;Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;173 A.6 AdS&nbsp;as a Ruled Surface&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;173 <br>A.6.1 Light-Cone&nbsp;Frame .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;174 <br>A.7 AdS&nbsp;Coordinate Systems Summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;175 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    239 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us