Thin Film Deposition of Conducting Polymers and Carbon Allotropes

Thin Film Deposition of Conducting Polymers and Carbon Allotropes

UNIVERSITY OF CALIFORNIA Los Angeles Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry By Julio Marcelo D'Arcy 2012 © Copyright by Julio Marcelo D'Arcy 2012 ABSTRACT OF THE DISSERTATION Thin Film Deposition of Conducting Polymers and Carbon Allotropes via Interfacial Solution Processing and Evaporative Vapor Phase Polymerization By Julio Marcelo D'Arcy Doctor of Philosophy in Chemistry University of California, Los Angeles, 2012 Professor Richard B. Kaner, Chair A new solution processing technique is developed for depositing continuously conductive transparent thin films comprised of conducting polymer nanostructures. The deposition mechanism is driven by interfacial surface tension gradients leading to rapid directional fluid flow known as the Marangoni effect. This technique is a universal solution to thin film deposition for coating any type of substrate at ambient conditions within seconds. The versatility of this method of deposition is further explored utilizing Pickering emulsions of carbon allotropes to produce transparent conductive coatings. Film morphology and electrical properties of carbon nanotubes and sheets of both graphite oxide and chemically converted graphene are ii controlled by solution processing at the liquid/liquid interface. This dissertation reports on harnessing directional fluid flow to afford a simple and scalable thin film deposition technique for both organic and inorganic nanostructured semiconductors. Substrate directed thin film deposition is engineered by forming a liquid-liquid interface on the surface of a target substrate and is accomplished by matching the surface energy of a substrate to the surface tension of solvents utilized for emulsifying solid nanostructures. Flexible substrates such as poly(ethylene terephthalate) and polyvinyl chloride are coated directly by combining solid nanostructured semiconductors, water and a fluorocarbon. The extremely low surface tension of a fluorinated fluid leads to the wetting of plastics and provides a liquid layer on the surface of a plastic substrate that serves as an anchoring layer for attachment of solids and formation of a continuous and conductive thin film. Spreading is shown in a supplementary movie submitted with this dissertation. A new technique for the synthesis of poly(3,4-ethylenedioxythiophene) nanofibers by vapor polymerization of an aqueous droplet of iron(III) chloride without a template is also demonstrated. Nanofibers of high aspect ratio of this conducting polymer could only previously be synthesized with the aid of templating agents such as pre-electrospun nanofibers. Now, by inducing a constant contact area mode of evaporation, polymer morphology is controlled and vapor polymerization of an oxidant droplet results in a highly conductive, stable and robust thick film comprised of intrinsic one-dimensional vertically directed anisotropic nanostructures of high aspect ratio. iii The dissertation of Julio Marcelo D'Arcy is approved. ________________________________ Jeffrey I. Zink _________________________________ Yang Yang ________________________________ Richard B. Kaner, Committee Chair University of California, Los Angeles 2012 iv Dedicated to my loving and supporting wife, Genevieve Suzanne D'Arcy, aka "editor in chief". v Table of Contents Abstract................................................................................................................................ ii Certifying signatures............................................................................................................ iv Dedication............................................................................................................................ v Table of contents.................................................................................................................. vi List of figures....................................................................................................................... xii List of tables......................................................................................................................... xxxi List of supplementary material............................................................................................ xxxii Acknowledgements.............................................................................................................. xxxiii Preface.................................................................................................................................. xxxv Vita....................................................................................................................................... xxxvii Ch.1 Conducting polymer thin films.............................................................................. 1 1.1 Introduction............................................................................................................... 1 1.2 Solution based thin film deposition technologies..................................................... 3 vi 1.2.1 Langmuir-Blodgett monolayers................................................................................ 4 1.2.2 Dip-coating thin films............................................................................................... 5 1.2.3 Layer-by-layer deposition......................................................................................... 7 1.2.4 Liquid-liquid interfacial deposition.......................................................................... 8 1.3 Conclusions................................................................................................................ 10 1.4 Outline of the dissertation.......................................................................................... 11 1.5 References.................................................................................................................. 12 Ch.2 Fluid flow driven by interfacial surface tension gradient.................................... 15 2.1 Introduction................................................................................................................ 15 2.2 Experimental.............................................................................................................. 17 2.3 Mechanism of interfacial film spreading................................................................... 22 2.4 Interfacial thin films of polyaniline nanofibers......................................................... 26 2.5 Catenoidal viscous flow............................................................................................. 27 2.6 Using interfacial surface tension to control thin film spreading................................ 32 2.7 Conclusions................................................................................................................ 35 vii 2.8 Outlook...................................................................................................................... 35 2.9 References.................................................................................................................. 36 Ch.3 Transparent films of conducting polymer nanofibers......................................... 37 3.1 Simple and scalable deposition of transparent films................................................. 37 3.2 Optimizing film surface area coverage..................................................................... 39 3.3 Deposition on non-activated hydrophobic surfaces.................................................. 40 3.4 Controlling adhesion to a substrate........................................................................... 43 3.5 Deposition of a monolayer of nanofibers.................................................................. 44 3.6 Conductivity measurements of polyaniline nanofiber films..................................... 47 3.7 Thin films of poly(3-hexylthiophene) nanofibers..................................................... 49 3.8 Multilayered thin film architectures.......................................................................... 54 3.9 Electrochromic thin films.......................................................................................... 57 3.10 Conclusions............................................................................................................... 59 3.11 Outlook...................................................................................................................... 59 3.12 References................................................................................................................. 60 viii Ch.4 Carbon nanostructures under interfacial fluid flow ........................................... 62 4.1 Introduction to thin films of carbon allotropes in electronic devices........................ 63 4.2 Carbon allotropes at the liquid/liquid interface......................................................... 64 4.3 Experimental.............................................................................................................. 65 4.4 Carbon film spreading mechanism............................................................................ 68 4.4.1 Process flow of interfacial thin film deposition technique........................................ 71 4.5 Conclusions..............................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    180 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us