Inequalities for the Polygamma Function 1 Introduction

Inequalities for the Polygamma Function 1 Introduction

Mathematica Aeterna, Vol. 3, 2013, no. 4, 249 - 252 Inequalities for the polygamma function Banyat Sroysang Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121 Thailand [email protected] Abstract In this paper, we prersent some inequalities involving the polygamma function. Mathematics Subject Classification: 26D15 Keywords: Polygamma function, inequality 1 Introduction The Euler gamma function Γ is defined by ∞ Γ(x)= tx−1e−tdt, Z0 where x> 0. The polygamma function ψ of order n ∈ N is defined by dn+1 Ψ (x)= ln Γ(x), n dxn+1 where x> 0. The polygamma function may be represented as ∞ tne−xt Ψ (x)=(−1)n+1 dt, n 1 − e−t Z0 where n ∈ N and x> 0. In 2006, Laforgia and Natalini [1] proved that 2 Ψm(x)Ψn(x) ≥ Ψ m+n (x) 2 250 Banyat Sroysang m+n N where m, n, 2 ∈ and x> 0. In 2011, Sulaiman [2] gave the inequalities as follows. 1/p 1/q Ψ (x)Ψ (x) ≥ Ψ m + n (x) (1) m n p q m n ∈ N 1 1 where m, n, p + q , x> 0, p> 1 and p + q = 1. xp yq Ψ1/p(px)Ψ1/q(qx) ≥ Ψ + (2) n n n p q 1 1 ≤ 1 1 where n is a positive odd integer, x,y > 1, x + y 1, p> 1 and p + q = 1. xp yq −Ψ1/p(px)Ψ1/q(qx) ≤ Ψ + (3) n n n p q 1 1 ≤ 1 1 where n is a positive even integer, x,y > 1, x + y 1, p> 1 and p + q = 1. In this paper, we present the generalizations for the inequalities (1), (2) and (3). 2 Results Theorem 2.1. Let n1, n2, ..., nk ∈ N, x > 0 and p1,p2, ...pk > 1 be such that k ni ∈ N and k 1 =1. Then i=1 pi i=1 pi P P k 1/pi ≥ k ni Ψni (x) Ψ (x). i=1 pi i=1 Y P Proof. By the generalized H¨older inequality, k ni ∞ i=1 −xt k ni +1 t pi e i=1 p P k ni x − i dt Ψ ( )=( 1)P −t i=1 pi 0 1 − e P Z n ∞ k i − x t k ni+1 t pi e pi − i=1 pi dt =( 1)P −t 1/p 0 (1 − e ) i i=1 Z Y k ∞ n −xt 1/pi k ni+1 t i e ≤ − i=1 pi dt ( 1)P −t 0 1 − e i=1 Z k Y 1/pi = Ψni (x). i=1 Y We note on Theorem 2.1 that if k = 2 then we obtain the inequality (1). Inequalities for the polygamma function 251 Theorem 2.2. Let n be a positive odd integer, and let x1, x2, ..., xk > 1 and k k k 1 p1,p2, ...p > 1 be such that x ≤ x and =1. Then k i=1 i i=1 i i=1 pi k P Q k P xpi Ψ1/pi (p x ) ≥ Ψ i . n i i n p i=1 i=1 i ! Y X Proof. We note that k k xpi x ≤ i . (4) i p i=1 i=1 i Y X By the generalized H¨older inequality, p x i − k i k ∞ t i=1 xpi tne pi i P dt Ψn = −t p 0 1 − e i=1 i ! Z X ∞ − k tne t i=1 xi ≤ Q dt −t 0 1 − e Z ∞ − k tne t i=1 xi ≤ P dt −t 0 1 − e Z n ∞ k −x t t pi e i dt = −t 1/p 0 (1 − e ) i i=1 Z Y k ∞ − 1/p tne pixit i ≤ dt −t 0 1 − e i=1 Z Yk 1/pi = Ψn (pixi). i=1 Y We note on Theorem 2.2 that if k = 2 then we obtain the inequality (2). Theorem 2.3. Let n be a positive even integer, and let x1, x2, ..., xk > 1 k k k 1 and p1,p2, ...p > 1 be such that x ≤ x and =1. Then k i=1 i i=1 i i=1 pi k P Q k P xpi (−1)k+1 Ψ1/pi (p x ) ≤ Ψ i . n i i n p i=1 i=1 i ! Y X 252 Banyat Sroysang Proof. By the inequality (4) and by the generalized H¨older inequality, p x i − k i k ∞ t i=1 xpi tne pi i − P dt Ψn = −t p 0 1 − e i=1 i ! Z X ∞ − k tne t i=1 xi ≥ − Q dt −t 0 1 − e Z ∞ − k tne t i=1 xi ≥ − P dt −t 0 1 − e Z n ∞ k −x t t pi e i − dt = −t 1/p 0 (1 − e ) i i=1 Z Y k ∞ − 1/p tne pixit i ≥ − dt −t 0 1 − e i=1 Z Y k k+1 1/pi =(−1) Ψn (pixi). i=1 Y We note on Theorem 2.3 that if k = 2 then we obtain the inequality (3). References [1] A. Laforgia and P. Natalini, Turan-type inequalites for some special func- tions, J. Ineq. Pure Appl. Math., 2006, 7(1), Art. 32. [2] W. T. Sulaiman, Turan inequalites for the digamma and polygamma func- tions, South Asian J. Math., 2011, 1(2), 49–55. Received: February, 2013.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us