On K-Fibonacci Numbers of Arithmetic Indexes

On K-Fibonacci Numbers of Arithmetic Indexes

Applied Mathematics and Computation 208 (2009) 180–185 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc On k-Fibonacci numbers of arithmetic indexes Sergio Falcon *, Angel Plaza Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain article info abstract Keywords: In this paper, we study the sums of k-Fibonacci numbers with indexes in an arithmetic k-Fibonacci numbers sequence, say an þ r for fixed integers a and r. This enables us to give in a straightforward Sequences of partial sums way several formulas for the sums of such numbers. Ó 2008 Elsevier Inc. All rights reserved. 1. Introduction One of the more studied sequences is the Fibonacci sequence [1–3], and it has been generalized in many ways [4–10]. Here, we use the following one-parameter generalization of the Fibonacci sequence. Definition 1. For any integer number k P 1, the kth Fibonacci sequence, say fFk;ngn2N is defined recurrently by Fk;0 ¼ 0; Fk;1 ¼ 1; and Fk;nþ1 ¼ kFk;n þ Fk;nÀ1 for n P 1: Note that for k ¼ 1 the classical Fibonacci sequence is obtained while for k ¼ 2 we obtain the Pell sequence. Some of the properties that the k-Fibonacci numbers verify and that we will need later are summarized below [11–15]: pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi n n 2 2 r1Àr2 kþ k þ4 kÀ k þ4 [Binet’s formula] Fk;n ¼ r Àr , where r1 ¼ 2 and r2 ¼ 2 . These roots verify r1 þ r2 ¼ k, and r1 Á r2 ¼1 1 2 2 nþ1Àr 2 [Catalan’s identity] Fk;nÀrFk;nþr À Fk;n ¼ðÀ1Þ Fk;r 2 n [Simson’s identity] Fk;nÀ1Fk;nþ1 À Fk;n ¼ðÀ1Þ n [D’Ocagne’s identity] Fk;mFk;nþ1 À Fk;mþ1Fk;n ¼ðÀ1Þ Fk;mÀn [Convolution Product] Fk;nþm ¼ Fk;nþ1Fk;m þ Fk;nFk;mÀ1 In this paper, we study different sums of k-Fibonacci numbers. Sums of Fibonacci numbers appear in different contexts, even they are related with the dimensionality of heterotic superstrings [16,17]. We focus here on the subsequences of k-Fibonacci numbers with indexes in an arithmetic sequence, say an þ r for fixed integers a, r with 0 6 r 6 a À 1. Several formulas for the sums of such numbers are deduced in a straightforward way. 2. On the k-Fibonacci numbers of kind an þ r Let us prove two lemmas that we will need later. Lemma 2. For all integer n (n P 1): n n r1 þ r2 ¼ Fk;nþ1 þ Fk;nÀ1: ð1Þ * Corresponding author. E-mail address: [email protected] (S. Falcon). 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.11.031 S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185 181 Proof. Applying Binet’s formula and taking into account that r1r2 ¼1 1 nþ1 nþ1 nÀ1 nÀ1 1 n 1 n 1 Fk;nþ1 þ Fk;nÀ1 ¼ ðr1 À r2 þ r1 À r2 Þ¼ r1 r1 þ À r2 r2 þ r1 À r2 r1 À r2 r1 r2 1 n n n n à ¼ ðr1ðr1 À r2Þþr2ðr1 À r2ÞÞ ¼ r1 þ r2: r1 À r2 a Lemma 3. Fk;aðnþ2Þþr ¼ðFk;aÀ1 þ Fk;aþ1ÞFk;aðnþ1Þþr ðÀ1Þ Fk;anþr Proof. Taking into account Lemma 2 and Binet’s formula: aðnþ1Þþr aðnþ1Þþr a a r1 À r2 1 aðnþ2Þþr aðnþ2Þþr a anþr a anþr ðFk;aÀ1 þ Fk;aþ1ÞFk;aðnþ1Þþr ¼ðr1 þ r2Þ ¼ ðr1 À r2 þðÀ1Þ r1 ðÀ1Þ r2 Þ r1 À r2 r1 À r2 a ¼ Fk;aðnþ2Þþr þðÀ1Þ Fk;anþr: à Let us denote Fk;nÀ1 þ Fk;nþ1 by Lk;n (numbers Lk;n are called k-Lucas numbers). Then previous formula becomes a Fk;aðnþ2Þþr ¼ Lk;aFk;aðnþ1Þþr ðÀ1Þ Fk;anþr: ð2Þ 1 Eq. (2) gives the general term of the k-Fibonacci sequence fFk;anþrgn¼0 as a linear combination of the two preceding terms. Note that, applying iteratively this formula, the general term can be written as a non-linear combination of the two first terms of the sequence: 0 1 0 1 nÀ1 nÀ2 ½X2 ½X2 @ ðaþ1Þi nÀ1À2i n À 1 À i A nÀ1À2i @ ðaþ1Þðiþ1Þ nÀ2À2i n À 2 À i A nÀ2Ài Fk;anþr ¼ ð1Þ Lk;a Fk;aþr þ ð1Þ Lk;a Fk;r : i¼0 i i¼0 i In this way, the general term of sequence fFk;anþrg is written in function of the two first terms. In particular, for a ¼ 1itis r ¼ 0, see [12], we have nÀ1 ½X2 nÀ1À2i n À 1 À i Fk;n ¼ k : i¼0 i 2.1. Generating function of the sequence fFk;anþrg Let fa;rðk; xÞ be the generating function of the sequence fFk;anþrg, with 0 6 r 6 a À 1. That is, fa;rðk; xÞ¼Fk;rþ 2 Fk;aþrx þ Fk;2aþrx þÁÁ. After some easy algebra X ÀÁ a 2 a n ð1 À Lk;ax þðÀ1Þ x Þfa;rðk; xÞ¼Fk;r þðFk;aþr À Fk;rLk;aÞx þ Fk;aðnþ2Þþr À Lk;aFk;aðnþ1Þþr þðÀ1Þ Fk;anþr x : nP2 First, taking into account Lemma 3, the series of the Right Hand Side vanishes. On the other hand, the Convolution Product Identity establishes that Fk;rþa ¼ Fk;rFk;aþ1 þ Fk;rÀ1Fk;a,soFk;aþr À Fk;rLk;a ¼ Fk;aFk;rþ1 À Fk;aþ1Fk;r. r Finally, Fk;aÀr ¼ Fk;ÀrFk;aþ1 þ Fk;ÀrÀ1Fk;a ¼ðÀ1Þ ðFk;aþ1Fk;r þ Fk;aFk;rþ1Þ, and the generating function for the initial power ser- ies is F þðÀ1ÞrF x f ðk; xÞ¼ k;r k;aÀr : ð3Þ a;r a 2 1 À Lk;ax þðÀ1Þ x 2.1.1. Particular cases The generating functions of sequences fFk;anþrg for different values of parameters a and r are ; x (1) a ¼ 1 and then r ¼ 0: f1;0ðk xÞ¼1ÀkxÀx2 [12,15] (2) a ¼ 2: kx (a) r ¼ 0: f2;0ðk; xÞ¼ 2 1ðk þ2Þxþx2 1Àx (b) r ¼ 1: f2;1ðk; xÞ¼ 2 1ðk þ2Þxþx2 182 S. Falcon, A. Plaza / Applied Mathematics and Computation 208 (2009) 180–185 (3) a ¼ 3: ðk2þ1Þx (a) r ¼ 0: f3;0ðk; xÞ¼ 3 1ðk þ3kÞxÀx2 1Àkx (b) r ¼ 1: f3;1ðk; xÞ¼ 3 1ðk þ3kÞxÀx2 kþx (c) r ¼ 2: f3;2ðk; xÞ¼ 1ðk3þ3kÞxÀx2 2.2. Sum of k-Fibonacci numbers of kind an þ r In this section, we study the sum of the k-Fibonacci numbers of kind an þ r, with a an integer number, and r ¼ 0; 1; 2; ...; a À 1. Theorem 4. Sum of the k-Fibonacci numbers of kind an þ r Xn a r Fk;aðnþ1Þþr ðÀ1Þ Fk;anþr À Fk;r ðÀ1Þ Fk;aÀr Fk;aiþr ¼ a : ð4Þ i¼0 Fk;aþ1 þ Fk;aÀ1 ðÀ1Þ À 1 P n Proof. Applying Binnet’s formula to Sk;anþr ¼ i¼0Fk;aiþr, we get ! Xn Xn Xn raiþr À raiþr 1 1 ranþrþa À rr ranþrþa À rr S ¼ 1 2 ¼ raiþr À raiþr ¼ 1 1 À 2 2 k;anþr r À r r À r 1 2 r À r ra À 1 ra À 1 i¼0 1 2 1 2 i¼0 i¼0 1 2 1 2 1 1 anþr a r a aðnþ1Þþr r anþr a a r aðnþ1Þþr r ¼ a a a r1 ðr1r2Þ À r1r2 À r1 þ r1 À r2 ðr1r2Þ þ r1r2 þ r2 À r2 ðr r Þ À r À r þ 1 r1 À r2 1 2 1 2 ! 1 ranþr À ranþr raðnþ1Þþr À raðnþ1Þþr rr À rr Àra ðra ðr ÞÀr À r ÞÀr 1 a 1 2 1 2 1 2 2 1 1 2 ¼ a a a ð Þ À þ þ ð1Þ ðr1 þ r2Þþ1 r1 À r2 r1 À r2 r1 À r2 r1 À r2 a r Fk;aðnþ1Þþr ðÀ1Þ Fk;anþr À Fk;r ðÀ1Þ Fk;aÀr ¼ a ; Fk;aþ1 þ Fk;aÀ1 ðÀ1Þ À 1 where we have used Eq. (2). h For k ¼ 1; 2; 3 different sequences of these partial sums are listed in OEIS [18]. Corollary 5. Sum of odd k-Fibonacci numbers If a ¼ 2p þ 1 then Eq. (4) is Xn F þ F À F ðÀ1ÞrF F ¼ k;ð2pþ1Þðnþ1Þþr k;ð2pþ1Þnþr k;r k;ð2pþ1Þr : ð5Þ k;ð2pþ1Þiþr F þ F i¼0 k;2pþ2 k;2p For example P n Fk;nþ1þFk;n ÀFk;0ÀFk;1 Fk;nþ1þFk;nÀ1 (1) If p ¼ 0 then a ¼ 1 ! r ¼ 0, and Fk;i ¼ ¼ [11,12] i¼0 Fk;2þFk;0 k (a) For k ¼ 1, for the classical Fibonacci sequence it is Xn F þ F À 1 F ¼ nþ1 n ¼ F À 1: i k nþ2 i¼0 P n Pnþ1þPnÀ1 (b) For k ¼ 2, for the Pell sequence we obtain i¼0Pi ¼ 2 P r n Fk;3ðnþ1Þþr þFk;3nþr ÀFk;r ð1Þ Fk;3Àr (2) If p ¼ 1 ! a ¼ 3, then Fk;3iþr ¼ 3 i¼0 k þ3k P 2 n Fk;3nþ3þFk;3nÀk À1 (a) r ¼ 0: Fk;3i ¼ 3 i¼0 k þ3k For the classical Fibonacci sequence, k ¼ 1, it is Xn F þ F À 2 F ¼ 3nþ3 3n : 3i 4 i¼0 P n Fk;3nþ4þFk;3nþ1þkÀ1 (b) r ¼ 1: Fk;3iþ1 ¼ 3 i¼0 k þ3k For the classical Fibonacci sequence, k ¼ 1, it is Xn F þ F F ¼ 3nþ4 3nþ1 : 3iþ1 4 i¼0 S.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us