Classifying Vineyards from Satellite Images: a Case Study on Burgundy’S Côte D’Or

Classifying Vineyards from Satellite Images: a Case Study on Burgundy’S Côte D’Or

04-ducati_05b-tomazic 08/01/15 21:42 Page247 CLASSIFYING VINEYARDS FROM SATELLITE IMAGES: A CASE STUDY ON BURGUNDY’S CÔTE D’OR JorgeR.DUCATI1,2,4,*,MagnoG.BOMBASSARO1 andJandyraM.G.FACHEL3 1:CentroEstadualdePesquisasemSensoriamentoRemotoeMeteorologia,UniversidadeFederaldoRioGrande doSul,Av.BentoGoncalves9500,CEP91501-970,PortoAlegre,Brazil 2:DepartamentodeAstronomia,InstitutodeFísica,UniversidadeFederaldoRioGrandedoSul, Av.BentoGoncalves9500,CEP91501-970,PortoAlegre,Brazil 3:DepartamentodeEstatística,InstitutodeMatemática,UniversidadeFederaldoRioGrandedoSul, Av.BentoGoncalves9500,CEP91501-970,PortoAlegre,Brazil 4:Visitingprofessor(2011),ÉcoleSupérieured‘Agricultured’Angers,GroupeESA,55rueRabelais, 49007Angers,France Abstract Résumé Aim:TouseRemoteSensingimageryandtechniquesto Objectif :Différencierlescatégoriesdeparcellesdu differentiatecategoriesofBurgundianvineyards. vignoblebourguignonparl’utilisationd’imagessatellites. Methods and results :Asampleof201vineplotsor Méthodes et résultats:Unéchantillonde201parcellesou “climats”fromtheCôted’OrregioninBurgundywas “climats”delaCôted’OrenBourgogneaétésélectionné, selected,consistingofthreevineyardcategories(28Grand formépartroiscatégoriesdevignobles(28GrandCru, Cru,74PremierCru,and99Communale)andtwogrape 74 PremierCruet99Communale)etdeuxcépages(Pinot varieties(PinotnoirandChardonnay).Amaskformedby noiretChardonnay).Unmasquecomposéparles thepolygonsofthesevineplotswasmadeandprojectedon polygonesdecesparcellesaétéconstruitetensuiteprojeté foursatelliteimagesacquiredbytheASTERsensor, surquatreimagessatellitesdelarégion,collectéesparle coveringtheCôted’Orregioninyears2002,2003(winter senseurASTERen2002,2003(enhiver),2004et2006. image),2004and2006.Meanreflectanceswereextracted Lesréflectancesmoyennespourlespixelsàl’intérieurde frompixelswithineachpolygonforeachofthenine chaquepolygoneontétécalculéespourchaqueannéeet spectralbands(visibleandinfrared)coveredbyASTER. pourchacunedesneufbandesspectrales(visibleet Thedatabasehadatotalof797reflectancespectra infrarouge).Labasededonnéesestforméepar797spectres assembledoverthefourimages.Statisticaldiscriminant deréflectance.Desanalysesdiscriminantesdupourcentage analysisofpercentageclassificationaccuracywasmade d'exactitudeduclassementontétéfaitesséparémentpour separatelyforCôtedeNuitsandCôtedeBeaune,andfor CôtedeNuitsetCôtedeBeauneetpourchaqueannée.Les eachyear.Resultsshowedthatforindividualyearsand résultatsmontrentquelaclassificationauniveaudes Côtes,classificationaccuracyforvineyardcategorywasas catégoriesdevignobleaétépréciseentre66,7 %(Beaune highas73.7 %(Beaune2002)andaslowas66.7 % 2003)et73,7 %(Beaune2002).Aucunedifférence (Beaune2003).Therewerenosignificantdifferencesin significativedanslaprécisionn'aététrouvéeentreles accuracybetweenspring,summerandwinterimages. saisonsdel’annéedesimages(printemps,étéethiver). ClassificationaccuracyforgrapevarietyinCôtedeBeaune PourlaséparationdescépagessurlaCôtedeBeaune,la overthefourstudyyearswasbetween73.5 %forPinot précisiondel’analysediscriminanteaétéentre73,5 %pour noirclimatsin2004and91.9 %forChardonnayclimatsin lesparcellesdePinotnoiren2004et91,9 %pourles 2006,includingthewinterimage.Concerningthe parcellesdeChardonnayen2006,comprisel’image vegetationindexNDVI,therewerenosignificant d’hiver.Pourl’indicedevégétationNDVI,aucunes differencesbetweenvineyardcategories. différencessignificativesentrelescatégoriesn’ontété Conclusions:Satellitedataisshowntobefunctionalto trouvées. revealvineyardquality.Spectraldifferencesbetween Conclusion:L’analysespectraledesdonnéessatellitaires categoriesofBurgundianvineyardsareatleastpartially peutdonneruneindicationdelaqualitéd’unvignoble duetoterroircharacteristics,whicharetransmittedtovine bourguignon.Lesdifférencesspectralesentrelescatégories andvinecanopy. devignoblessontduesaumoinsenpartieauxpropriétésdu Significance and impact of the study :Thiswork terroirtransmisesàlavigne. indicatesthatRemoteSensingtechniquescanbeusedasan Signification et impact de l’étude:Cetravailmontreque auxiliarytoolforthemonitoringofvineyardqualityin latélédétectionpeutêtreunoutilsupplémentairepour establishedviticulturalregionsandforthestudyofquality l’observationderégionsviticolesétablies,etaussipour potentialinnewregions. l'étudedelaqualitépotentielleattenduedansdenouvelles Key words :Burgundianclimats,RemoteSensing, régions. vineyardsspectra,leafreflectance,satelliteimages Mots clés:climatbourguignon,télédétection,spectredes vignobles,réflectancedesfeuilles,imagessatellites manuscript received 9th September 2014 - revised manuscript received 19th July 2014 J. Int. Sci. Vigne Vin , 2014, 48, 247-260 *Correspondingauthor:[email protected] - 247 - ©Vigne et Vin Publications Internationales (Bordeaux, France) 04-ducati_05b-tomazic 08/01/15 21:42 Page248 JorgeR.DUCATI et al. INTRODUCTION techniquesallowsnotonlytheseparationof vineyardsfromothervegetation,butalso,toacertain TheobservationofEarthfromremoteplatformslike degree,theidentificationofgrapevarieties(Cemin airplanesorsatelliteshasprovedtobeapowerful andDucati,2011).Thesepossibilitieswerealready resourceforlandstudies,withapplicationsto perceivedfromlaboratorymeasurements(Lacaret geology,agriculture,environmentalsciences,urban al.,2001),butnowitbecomesclearthatsatellite andmarinemonitoring,andmanyotherfields. imageshavetheirownpotentialinviticultural Presently, most of these Remote Sensing studies.Afterusingsatelliteimagestostudy investigationsareperformedusingdigitalimages vineyardsinFrance(Bordeaux,Champagne,Loire), collectedfromsatellites,whichprovidelow-cost ChileandBrazil,wenowfocusourstudieson data,withtheadvantageofbeingre-acquiredatnew Burgundy´sCôted’Or.Thischoiceisjustifiedby over-flights.ThetypicalRemoteSensingprocess threebasicfactors: involvescamerasandsensorsaboardthesatellite, whichcollectsunlightreflectedfromtheEarth’s a)ThehierarchicaldivisionoftheBurgundian surface;duringreflectionbytypesorclassesof vineyardishistoricalandemblematical,havingbeen surfacecover,likesoilorvegetation,thesolar theobjectofcountlessstudies,butuptothepresent spectrumundergoesmodifications.Theresulting dayfewpapers,ifany,haveusedobservationsfrom reflectancespectracarrycharacteristicfeaturesofthe space; classes present in the imaged surface and identificationoftheseclassesispossible.For b)ThetypicalsizeofvineparcelsinBurgundyisof example,reflectancespectrafromplantsare theorderoffewhectares,beingadequatelyresolved characterizedbylowreflectanceinvisiblelight,with bymultispectralimageslikethosefromASTER apeakat550nmduetochlorophyll,whichisthe sensor; reasonforthegreencolorofvegetation;atnear- infrared(NIR)wavelengthsthereisanabrupt c)TheCôted’Orregionisgenerallyorientedfacing transitiontowardsstrongerreflectances(theRed east(PitiotandServant2010;Atkinson2011),andso Edge);andatlongerwavelengths(theShort-Wave mostvineyardsreceivethemorningsunlightinfairly Infrared,SWIR)reflectancefalls,carryingthetypical equalinclinationsofsolarrays.Thisfactisrelevant featuresofabsorptionbywaterat1,400and sincetheASTERimagergetsdatainthemorning 1,900 nm.Thespectralsignaturesofmineralsor (around10h30AM).Theilluminationofparcels, waterarequitedifferent,andthisallowsthe whichingeneralareongentleslopes,tendstobe identificationofclassesofsoilandlandcoverin homogeneous;thisperceptionwasgainedduring RemoteSensingimageswhichhavetheadequate severalfieldtripstotheregioninthelastyearsbythe spectralsensitivity;forcomprehensivereviewson firstauthor. theapplicationsofRemoteSensingimagerytoland InBurgundy,thehierarchyofGrandCru,Premier monitoring,seeJensen(2007)orCampbelland Cruandmoregenericappellations(Côtes,Villages, Wynne(2011). Communales,etc.)seemstobelinkedtosoil Thisworkdealswithreflectancespectraofvineyards characteristics,whichareattheveryrootofthe asaparticularclassofvegetation.Applicationsof terroirconcept(VanLeeuwenandSeguin,2006). RemoteSensingtechniquestovineyardstudiesare Fromaprincipalcomponentanalysis,Wittendal stillintheirinfancy.Upuntilnow,themajorityof (2004)gaveweighttoawidespreadperception, studieshavefocusedonprecisionviticulture indicatingthatmostGrandCrusoilshaveaparticular managementinprivatepropertiesoflimitedsurface structurethatissignificantlydifferentfromthesoils and,forthisreason,arebasedonairbornesensors, ofothercategories.Therefore,theobjectiveofthis eithermultispectralorhyperspectral(Bramleyand investigationwastoverifyifthesequalitycategories, Proffitt,1999;Zarco-Tejadaet al.,2005).Remote whicharetransmittedfromsoiltowine,arealso Sensingimageryfromsatellitescoversmuchlarger transmittedfromsoiltovineleavesandiftheycanbe areasandissuitableforregionalsurveysand detectedinthespectralinformationcontainedinthe monitoring.Thisfieldofresearchisnewandmuch images.Thisisbecausetheobservationparameterin groundbreakingworkhastobedone.Inthisaspect, digitalimages,thereflectance,originatesmainlyfrom wereportedinaseriesofpapersstudiesperformed vineleavesreflectingsunlight,ifweareusingnon- overseveralviticulturalareasinEuropeandSouth winterdata.Atthehighplantdensityusedin America(DaSilvaandDucati,2009;Blauthand Burgundy(upto10,000vines/hectare),thesoilis Ducati, 2010 ; Ducati et al., 2014). It was almostentirelycoveredbytheplantcanopy;besides, demonstrated that Remote Sensing data and atthemomentofimageacquisition(10h30AM), J. Int. Sci. Vigne Vin , 2014, 48, 247-260 ©Vigne et Vin Publications Internationales (Bordeaux, France) - 248 - 04-ducati_05b-tomazic 08/01/15 21:42 Page249 thereisanimportantprojectionofshadowbetween than40pixelsof225 m2 each),withadequate vinerowsandlittlesunlightisreflectedfromthe geometry(themoresquare,thebetter),andevenly

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us