Design of a System for Cm-Range Wireless Communication

Design of a System for Cm-Range Wireless Communication

<p><strong>Design of a system for cm-range wireless communication </strong></p><p><em>Simone Gambini Jan M. Rabaey Elad Alon </em></p><p>Electrical Engineering and Computer Sciences University of California at Berkeley </p><p>Technical Report No. UCB/EECS-2009-184 <a href="/goto?url=http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-184.html" target="_blank">http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-184.html </a></p><p>December 18, 2009 <br>Copyright © 2009, by the author(s). <br>All rights reserved. </p><p>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. </p><p>Design of a system for cm-range wireless communications </p><p>by <br>Simone Gambini </p><p>A dissertation submitted in partial satisfaction of the requirements for the degree of </p><p>Doctor of Philosophy in </p><p>Electrical Engineeing and Computer Sciences in the <br>GRADUATE DIVISION of the <br>UNIVERSITY OF CALIFORNIA, BERKELEY </p><p>Committee in charge: <br>Professor Jan Rabey, Chair <br>Professor Elad Alon <br>Professor Paul K. Wright </p><p>Fall 2009 <br>The dissertation of Simone Gambini is approved. </p><ul style="display: flex;"><li style="flex:1">Chair </li><li style="flex:1">Date </li></ul><p>Date Date </p><p>University of California, Berkeley <br>Fall 2009 <br>Design of a system for cm-range wireless communications </p><ul style="display: flex;"><li style="flex:1">c</li><li style="flex:1">Copyright ꢀ 2009 </li></ul><p>by <br>Simone Gambini </p><p>Abstract </p><p>Design of a system for cm-range wireless communications by <br>Simone Gambini <br>Doctor of Philosophy in Electrical Engineeing and Computer Sciences </p><p>University of California, Berkeley <br>Professor Jan Rabey, Chair </p><p>The continuous growth in the number of mobile phone subscribers, which exceeded 3 billions by 2007 , and of the number of wireless devices and systems, led to visions of a near future in which wireless technology is so ubiquitous that 1000 Radios per person will exist. In this context, ad-hoc area networks between several consumer electronic devices located within a meter of each other will be necessary in order to reduce traffic towards the base station and reduce power consumption and interference generation.&nbsp;As existing air interfaces still both radiate and dissipate an order of magnitude higher power than what this future scenario requires, a new, low-power radio technology must be developed.&nbsp;In this thesis, we develop a low-power transceiver with range of a few centimeters targeted to mobile-mobile data exchange. The&nbsp;same transceiver could also be employed in some implanted applications, as well as in distributed industrial control environments. The design of the air-interface for this cm-range communication system at the propagation, system and circuit levels.&nbsp;First, we describe an optimization methodology that enables the designer to choose, for any given antenna design, which carrier frequency results in the maximum receiver Signal-To-Noise-Ratio (SNR). We then show how by using impulse-radio signaling, the chosen high-SNR channel can be leveraged to simplify the radio receiver architecture to the simplest possible RF receiver-consisting only of an RF rectifier.&nbsp;To mitigate the known issues of sensitivity to interference for these rectifier-based receivers, a technique to improve selectivity that uses only baseband processing and requires no RF prefilter is introduced. These techniques are demostrated by a transceiver test chip, implemented in a 65nm CMOS process .&nbsp;The transceiver dissipates 250µW in receive mode, and 25µW in transmit mode when operating at 1Mbps , and it integrates a timing-recovery loop that achieves jitter lower than 2nS while consuming 45µW.This figures correspond to </p><p>1an energy per bit of 300pJ, which compares favorably with current state-of-the art. <br>Professor Jan Rabey Dissertation Committee Chair </p><p>2<br>To my mother Silvia, my brother Francesco and my father Diego. </p><p>If I have seen a little further it is by standing on the shoulders of Giants </p><p>I.Newton i</p><p>Contents </p><p>List of Figures List of Tables vi xii </p><ul style="display: flex;"><li style="flex:1">Acknowledgements </li><li style="flex:1">xiii </li></ul><p></p><ul style="display: flex;"><li style="flex:1">1 1000&nbsp;Radios per Person And the Case for Ad-Hoc Networking </li><li style="flex:1">1</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">1.1 Short&nbsp;range wireless systems today&nbsp;. . . . . . . . . . . . . . . . . . . . . . . </li><li style="flex:1">4</li></ul><p>1.1.1 Commercially&nbsp;available, low-power short range bi-directional commu- </p><ul style="display: flex;"><li style="flex:1">nication devices&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . </li><li style="flex:1">4</li></ul><p>1.1.2 Bi-directional,narrowband&nbsp;short range radios resulting from academic </p><ul style="display: flex;"><li style="flex:1">papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . </li><li style="flex:1">5</li></ul><p>678<br>1.1.3 Impulse&nbsp;Ultra-wideband radios resulting from academic papers .&nbsp;. . . 1.1.4 Other&nbsp;short-range, low energy communication systems&nbsp;. . . . . . . . <br>1.2 Thesis&nbsp;structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . </p><p></p><ul style="display: flex;"><li style="flex:1">2 Link&nbsp;Margin Modeling for cm-range radios </li><li style="flex:1">9</li></ul><p></p><p>2.1 Improving&nbsp;path loss modeling&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;10 <br>2.1.1 Electromagnetic&nbsp;wave propagation at short range&nbsp;. . . . . . . . . . .&nbsp;10 2.1.2 Magnetic&nbsp;Coupling .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;15 2.1.3 Model&nbsp;Verification .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;16 2.1.4 Comparison&nbsp;with power transfer&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;23 2.1.5 Chosen&nbsp;design point and channel measurements with cm-scale antennas&nbsp;24 2.1.6 Channel&nbsp;impulse response&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;24 <br>2.2 Antenna&nbsp;Design for a 3-10GHz wideband system .&nbsp;. . . . . . . . . . . . . . .&nbsp;25 <br>2.2.1 Slotted&nbsp;Bowtie Antenna Design&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;27 </p><p>ii <br>2.2.2 Monopole&nbsp;antenna design&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;30 <br>2.3 Conclusions&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;31 </p><p></p><ul style="display: flex;"><li style="flex:1">3 Low&nbsp;Power RF System Design for a cm-range Transceiver </li><li style="flex:1">34 </li></ul><p></p><p>3.1 Radio&nbsp;Dynamic Range-Power Tradeoff&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;34 <br>3.1.1 Overhead&nbsp;power components .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;36 3.1.2 Summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;38 <br>3.2 Effect&nbsp;of duty-cycling on power dissipation&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;39 <br>3.2.1 Overhead&nbsp;Costs in duty-cycled systems&nbsp;. . . . . . . . . . . . . . . . .&nbsp;41 3.2.2 Duty&nbsp;cycling optimization . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;41 3.2.3 Inherent&nbsp;Asymmetry of duty-cycled systems&nbsp;. . . . . . . . . . . . . .&nbsp;44 3.2.4 Power&nbsp;consumption of VCO and baseband: a more critical look&nbsp;. . .&nbsp;44 <br>3.3 Radio&nbsp;Architecture Design&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;45 <br>3.3.1 Technological&nbsp;Constraints .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;46 3.3.2 Transmitter&nbsp;section and link budget .&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;46 3.3.3 Receiver&nbsp;section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;47 <br>3.4 Conclusions&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;51 </p><p></p><ul style="display: flex;"><li style="flex:1">4 Baseband&nbsp;and Timer Subsystem Design </li><li style="flex:1">53 </li></ul><p></p><p>4.1 Baseband&nbsp;architectures for UWB systems .&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;53 4.2 Improving&nbsp;Interferer Performance in Self-Mixing Radios .&nbsp;. . . . . . . . . . .&nbsp;55 4.3 Synchronizer&nbsp;and modulation scheme design&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;66 4.4 Summary .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;76 </p><p></p><ul style="display: flex;"><li style="flex:1">5 Circuit&nbsp;Design </li><li style="flex:1">78 </li></ul><p></p><p>5.1 Introduction&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;78 5.2 Transmitter&nbsp;Circuits .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;79 <br>5.2.1 Architecture&nbsp;selection .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;79 5.2.2 Oscillator&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;81 5.2.3 Divider&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;83 5.2.4 PSK&nbsp;Modulator and Driver&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;85 <br>5.3 Receiver&nbsp;Circuits .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;88 <br>5.3.1 Matching&nbsp;network/duplexer .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;88 </p><p>iii <br>5.3.2 Reconfigurable&nbsp;mixer/diode .&nbsp;. . . . . . . . . . . . . . . . . . . . . .&nbsp;90 5.3.3 Baseband&nbsp;Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;97 5.3.4 Comparators&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;102 5.3.5 Layout&nbsp;and summary . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;107 5.3.6 Bias&nbsp;Circuits and power gating strategy&nbsp;. . . . . . . . . . . . . . . .&nbsp;107 <br>5.4 Timing&nbsp;Circuits .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;110 <br>5.4.1 Baseband&nbsp;oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;112 5.4.2 Baseband&nbsp;divider and comparator . . . . . . . . . . . . . . . . . . . .&nbsp;113 5.4.3 Pulse&nbsp;detection and retiming logic .&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;114 5.4.4 Controller&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;115 5.4.5 Block&nbsp;Layout and summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;116 <br>5.5 System&nbsp;Layout and summary&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;116 </p><p></p><ul style="display: flex;"><li style="flex:1">6 Measurement&nbsp;Results </li><li style="flex:1">121 </li></ul><p></p><p>6.1 FIB&nbsp;Issue .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;121 6.2 Transmitter&nbsp;measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;122 6.3 Receiver&nbsp;Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;126 <br>6.3.1 Sensitivity&nbsp;Measurements .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;126 6.3.2 Duty-cycled&nbsp;Measurements . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;128 6.3.3 Interference&nbsp;Rejection Measurements&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;128 6.3.4 Wireless&nbsp;Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;131 6.3.5 Receiver&nbsp;Performance Summary&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;135 6.3.6 Comparison&nbsp;with prior art&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;135 <br>6.4 Timer&nbsp;Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;137 </p><p></p><ul style="display: flex;"><li style="flex:1">7 Conclusions </li><li style="flex:1">142 </li></ul><p></p><p>7.1 Research&nbsp;Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;143 <br>7.1.1 Power-efficient&nbsp;TCM for wireless sensor networks&nbsp;. . . . . . . . . . .&nbsp;143 7.1.2 Circuit&nbsp;Implementation .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;143 </p><p></p><ul style="display: flex;"><li style="flex:1">A Matching&nbsp;Network Impedance Calculations </li><li style="flex:1">144 </li></ul><p></p><p>A.1 Receiver&nbsp;Side Impedance&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;144 A.2 Transmit&nbsp;Side Impedance&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;146 </p><p>iv </p><p></p><ul style="display: flex;"><li style="flex:1">B Statistical&nbsp;Jitter Transfer Analysis </li><li style="flex:1">147 </li></ul><p></p><p>v</p><p>List of Figures </p><p>1.1 Pushpin&nbsp;nodes, a first implementation of the paintable computing concept </p><ul style="display: flex;"><li style="flex:1">[66]. Approximate node size is 3.24cm<sup style="top: -0.3615em;">2 </sup>. . . . . . . . . . . . . . . . . . . . . </li><li style="flex:1">4</li></ul><p>2.1 Schematic&nbsp;of electrical dipoles and frame of reference&nbsp;. . . . . . . . . . . . .&nbsp;10 2.2 Equivalent&nbsp;circuit for monopoles in the near-field operating range&nbsp;. . . . . .&nbsp;13 2.3 Measured,&nbsp;calculated and simulated return loss for wire monopoles .&nbsp;. . . . .&nbsp;17 2.4 Calculated&nbsp;and measured path loss as a function of frequency .&nbsp;. . . . . . . .&nbsp;17 2.5 Measured&nbsp;and simulated path loss as a function of frequency&nbsp;. . . . . . . . .&nbsp;18 2.6 Measured&nbsp;path loss (including matching network) for the TX-RX Antenna pair at different separations&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;18 </p><p>2.7 Experimental&nbsp;setup in the BWRC Lab&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;19 2.8 Calculated(top)&nbsp;and measured(bottom) loss as a function of frequency for different antennas separations and quality factors&nbsp;. . . . . . . . . . . . . . .&nbsp;20 </p><p>2.9 Effect&nbsp;of matching network quality factor on voltage gain&nbsp;. . . . . . . . . . .&nbsp;21 2.10 Measured&nbsp;and simulated path loss as a function of range for different frequencies&nbsp;21 2.11 Antenna&nbsp;impedance quality factor as a function of frequency&nbsp;. . . . . . . . .&nbsp;22 2.12 Measured&nbsp;Channel S<sub style="top: 0.1494em;">21 </sub>as a function of TX-RX separation&nbsp;. . . . . . . . . .&nbsp;25 2.13 Received&nbsp;energy as a function of tap number&nbsp;. . . . . . . . . . . . . . . . . .&nbsp;26 2.14 Channel&nbsp;Impulse Response Sampled at 2GS/s for good channel: I-component <br>(top) and Q component (bottom)&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;26 </p><p>2.15 Annotated&nbsp;Bowtie Antenna Schematic&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;28 2.16 Bowtie Antenna Simulations:&nbsp;Effect of varying the expansion angle (top); effect of varying the inductive stub length(bottom)&nbsp;. . . . . . . . . . . . . .&nbsp;29 </p><p>2.17 Bowtie&nbsp;Antenna Measured Reflection versus HFSS Simulations .&nbsp;. . . . . . .&nbsp;30 2.18 Monopole antennas annotated schematic:full monopole(top) and loaded hollow monopole (bottom) .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;32 </p><p>vi <br>2.19 Measured results from monopole antennas (Full monopole (top) and loaded hollow monopole (bottom)&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;33 </p><p>3.1 Optimal&nbsp;Radio Range as a function of total radio power budget&nbsp;. . . . . . .&nbsp;35 3.2 Maximum&nbsp;Radio Range as a function of carrier frequency .&nbsp;. . . . . . . . . .&nbsp;36 3.3 Power&nbsp;dissipation versus total baseband gain . . . . . . . . . . . . . . . . . .&nbsp;37 3.4 Transceiver&nbsp;duty cycling concept&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;39 3.5 Analog&nbsp;Synchronizer .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;42 3.6 Power&nbsp;Dissipation of TX+RX as a function of duty-cycling&nbsp;. . . . . . . . . .&nbsp;42 3.7 Minimum&nbsp;Power Dissipation as a function of receiver turn-on-time T<sub style="top: 0.1494em;">m </sub>. . . .&nbsp;43 3.8 Desensitization&nbsp;due to reciprocal mixing&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;45 3.9 Comparison&nbsp;between a receiver comprising of LNA+AM detection (left), and lo power oscillator+passive mixer(right)&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;48 </p><p>3.10 Low Power Radio Architectures:&nbsp;a) Heterodyning b) RF Gain plus AM- <br>Detection c) Direct AM Detection .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;49 </p><p>3.11 Behavioral&nbsp;model of AM detector&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;49 3.12 Operation&nbsp;of a single transistor MOS AM Detector&nbsp;. . . . . . . . . . . . . .&nbsp;50 3.13 Minimum&nbsp;Input Amplitude s.t. AM-Detector is more power efficient solution&nbsp;52 </p><p>4.1 Receiver&nbsp;architecture with linear downconversion and analog correlation .&nbsp;. .&nbsp;54 4.2 Conversion&nbsp;gain for receivers with different baseband integration times&nbsp;. . .&nbsp;55 4.3 AM&nbsp;Detection as phasor domain length-measurement&nbsp;. . . . . . . . . . . . .&nbsp;56 4.4 False&nbsp;Positives Rate for system employing high pass filter versus conventional case .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;57 </p><p>4.5 Graphical&nbsp;Interpretation of the worst case angle&nbsp;. . . . . . . . . . . . . . . .&nbsp;59 4.6 Complete&nbsp;Baseband architecture for false-negative rate calculation&nbsp;. . . . . .&nbsp;60 4.7 Bit-Error&nbsp;Rate as a function of power for different frequency offset values&nbsp;. .&nbsp;60 4.8 Bit-Error&nbsp;Rate as a function of interferer offset of SIR=6dB&nbsp;. . . . . . . . .&nbsp;62 4.9 Simulated&nbsp;error of the receiver in diode mode for pulse durations of 2nS (blue) and 8nS (red). SIR=6dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;62 </p><p>4.10 Receiver&nbsp;with linear down converter and high-pass filtering at baseband&nbsp;. . .&nbsp;64 4.11 Bit-error&nbsp;rate performance in a linear downconverter as a function of interferer frequency offset&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;64 </p><p>vii <br>4.12 Proposed dual-mode receiver with real-time quality of service control(top) and overlaid false negative rates response of linear and AM-detecting downconverters(bottom) .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;65 </p><p>4.13 Conceptual&nbsp;Synchronizer Diagram . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;67 4.14 Block&nbsp;DIagram of Modem employing differential-PPM modulation and merged synchronizer/demodulator . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;68 </p><p>4.15 Trellis&nbsp;diagram for differentially demodulated PPM&nbsp;. . . . . . . . . . . . . .&nbsp;69 4.16 Effect&nbsp;of jitter on digital timing measurement&nbsp;. . . . . . . . . . . . . . . . .&nbsp;70 4.17 Period Estimate in the synchronizer with (red) and without (blue) datadependent rescaling: input to the filter (left) and period estimate(right) . . .&nbsp;72 </p><p>4.18 Waveforms&nbsp;in the synchronizer in the event of a missing pulse&nbsp;. . . . . . . .&nbsp;73 4.19 Probability&nbsp;density function(top) and cumulative distribution of input transition&nbsp;74 4.20 Simulated&nbsp;BER Estimate versus real BER&nbsp;. . . . . . . . . . . . . . . . . . .&nbsp;76 4.21 Comparison of waterfall curves with conventional and proposed amplitude estimation algorithm&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;77 </p><p>5.1 Block&nbsp;diagram of transceiver architecture . . . . . . . . . . . . . . . . . . . .&nbsp;79 5.2 Bandpass&nbsp;Pulse Generation Architectures:&nbsp;a) filtering; b) Edge Combining; c) Gated Oscillator&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;80 </p><p>5.3 Digitally&nbsp;Controlled Oscillator Schematic&nbsp;. . . . . . . . . . . . . . . . . . . .&nbsp;82 5.4 Simulated&nbsp;tuning range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;82 5.5 Impedance&nbsp;network model&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;83 5.6 Tuning&nbsp;control shown for the bottom rail.&nbsp;Top rail is symmetric but uses <br>PMOS transistor with 2x width&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;84 </p><p>5.7 Johnson&nbsp;divider architecture&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;84 5.8 TSPC&nbsp;Flip Flop circuit details and transistor sizes .&nbsp;. . . . . . . . . . . . . .&nbsp;85 5.9 PSK&nbsp;Modulator/multiplexer and control circuits . . . . . . . . . . . . . . . .&nbsp;86 5.10 Simulated&nbsp;Pulser Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;86 5.11 Effect&nbsp;of delayed inputs on glitching at the output of the multiplexer&nbsp;. . . .&nbsp;87 5.12 High-level&nbsp;matching network view&nbsp;. . . . . . . . . . . . . . . . . . . . . . . .&nbsp;89 5.13 Matching&nbsp;Network Used in The Design&nbsp;. . . . . . . . . . . . . . . . . . . . .&nbsp;91 5.14 Simulated&nbsp;input matching network for different values of digitally controlled capacitor C<sub style="top: 0.1494em;">2 </sub>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;92 </p><p>5.15 Simulated&nbsp;impedance at the transmitter port .&nbsp;. . . . . . . . . . . . . . . . .&nbsp;92 </p><p>viii <br>5.16 Envelope&nbsp;Detector topology of [52]&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;93 5.17 Output&nbsp;SNR and Amplitude level comparison for CS and CD diodes .&nbsp;. . . .&nbsp;94 5.18 Common-source&nbsp;diode .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;95 5.19 Implemented&nbsp;Mixer-Diode stage&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;96 5.20 CAD&nbsp;Layout of RF Front-end&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;97 5.21 Circuit&nbsp;diagram for lane of interleaved baseband&nbsp;. . . . . . . . . . . . . . . .&nbsp;98 5.22 Loads&nbsp;with high common-mode compliance: diode (left); and diode with level shift(right) .&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;99 </p><p>5.23 Distributed&nbsp;filter schematic (1 lane) . . . . . . . . . . . . . . . . . . . . . . .&nbsp;100 5.24 Dac&nbsp;Unit Cell Schematic. Nominal LSB current is 1.5µA . . . . . . . . . . .&nbsp;100 5.25 INL&nbsp;and DNL standard deviation for one the FIR filter bias-DACs .&nbsp;. . . . .&nbsp;101 5.26 Track&nbsp;and Hold Amplifier&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;102 5.27 Isolation&nbsp;Amplifier Schematic&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;103 5.28 Simulated&nbsp;FIR Filter frequency response for different settings .&nbsp;. . . . . . . .&nbsp;104 5.29 Block&nbsp;diagram of slicing chain&nbsp;. . . . . . . . . . . . . . . . . . . . . . . . . .&nbsp;104 5.30 Annotated&nbsp;Comparator Schematic .&nbsp;. . . . . . . . . . . . . . . . . . . . . . .&nbsp;105 5.31 Comparator&nbsp;simulations: decision threshold versus digital code(left) and uncalibrated input-referred offset distribution (right)&nbsp;. . . . . . . . . . . . . . .&nbsp;106 </p><p>5.32 Example&nbsp;of the effect of dual-thesholding and equivalence between dual thresholding and absolute value thresholding: the blue waveform, corresponding to δF = 100MHz and initial phase of π, never crosses the positive threshold, and goes undetected by single-comparator scheme.&nbsp;. . . . . . . . . . . . . .&nbsp;106 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    176 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us