
<p>CARTER<strong>AVIATION TECHNOLOGIES </strong></p><p><strong>An Aerospace Research & Development Company </strong></p><p><strong>Jay Carter, Founder & CEO </strong></p><p><strong>CAFE Electric Aircraft Symposium July 23</strong><sup style="top: -0.5em;"><strong>rd</strong></sup><strong>, 2017 </strong></p><p><a href="/goto?url=http://www.CarterCopters.com" target="_blank">www.CarterCopters.com </a></p><p><sub style="top: 0.032em;">©</sub>W<sub style="top: 0.032em;">20</sub>i<sub style="top: 0.032em;">1</sub>c<sub style="top: 0.032em;">5 C</sub>h<sub style="top: 0.032em;">A</sub>i<sub style="top: 0.032em;">R</sub>t<sub style="top: 0.032em;">TE</sub>a<sub style="top: 0.032em;">R A</sub>F<sub style="top: 0.032em;">V</sub>a<sub style="top: 0.032em;">IAT</sub>l<sub style="top: 0.032em;">I</sub>l<sub style="top: 0.032em;">O</sub>s<sub style="top: 0.032em;">N</sub>,<sub style="top: 0.032em;">T</sub>T<sub style="top: 0.032em;">EC</sub>e<sub style="top: 0.032em;">HN</sub>x<sub style="top: 0.032em;">O</sub>a<sub style="top: 0.032em;">LO</sub>s<sub style="top: 0.032em;">GIES, LLC </sub></p><p>1</p><p>SR/C is a trademark of Carter Aviation Technologies, LLC </p><p><strong>A History of Innovation </strong></p><p>Built first gyros while still in college with </p><p>father’s guidance </p><p>Led to job with Bell Research & Development </p><p>Steam car built by Jay and his father </p><p>First car to meet original 1977 emission standards </p><p>Could make a cold startup & then drive away in less than 30 seconds </p><p>Founded Carter Wind Energy in 1976 </p><p>Installed wind turbines from Hawaii to United </p><p>Kingdom to 300 miles north of the Arctic Circle One of only two U.S. manufacturers to survive </p><p>the mid ‘80s industry decline </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>2</p><p><strong>SR/C™ Technology Progression </strong></p><p>2013-2014 DARPA TERN </p><p>Won contract </p><p>over 5 majors </p><p>2009 <br>License Agreement with AAI, Multiple Military Concepts </p><p>2017 </p><p>2011 <br>2<sup style="top: -0.45em;">nd </sup>Gen First Flight Later Demonstrated <br>Find a Manufacturing <br>Partner and Begin <br>Commercial Development </p><p>L/D of 12+ </p><p>2005 1<sup style="top: -0.4em;">st </sup>Gen </p><p>L/D of 7.0 </p><p>1998 </p><p>1<sup style="top: -0.38em;">st </sup>Gen </p><p>First flight </p><p>1994 - 1997 Analysis & Component </p><p>Testing </p><p><strong>22 years, 22 patents + 5 pending </strong></p><p><strong>11 key technical challenges overcome Proven technology with real flight test </strong></p><p>1994 Company </p><p>founded </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>3</p><p><strong>SR/C™ Technology Progression </strong></p><p><strong>Quiet Jump Takeoff & Flyover at 600 ft agl </strong></p><p>Video also available on YouTube: <a href="/goto?url=https://www.youtube.com/watch?v=_VxOC7xtfRM" target="_blank">https://www.youtube.com/watch?v=_VxOC7xtfRM </a></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>4</p><p><strong>SR/C vs. Fixed Wing </strong></p><p>• SR/C rotor very low drag by being slowed </p><p><strong>Profile HP vs. Rotor RPM, PAV Rotor </strong></p><p>Drag per WADC TR 55-410: </p><p><strong>@ 250 kts @ SL </strong></p><p><sup style="top: -0.5452em;">3 </sup>1 4.6<sup style="top: -0.4686em;">2 </sup></p><p></p><p><sub style="top: 0.2598em;">0 </sub></p><p></p><p><em>C</em><sub style="top: 0.2598em;"><em>D </em></sub><em>A </em></p><p></p><p><em>R </em></p><p></p><p></p><p>600 </p><p>500 </p><p>400 300 200 100 </p><p>0</p><p><em>b</em></p><p>8</p><p><sub style="top: 0.2598em;">0 </sub></p><p><em>HP </em> </p><p><em>O</em></p><p>550 </p><p>299 </p><p>HPo - Full HPo - Rot Only </p><p></p><ul style="display: flex;"><li style="flex:1">155 </li><li style="flex:1">54 </li></ul><p>5.7 </p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">100 </li><li style="flex:1">200 </li><li style="flex:1">300 </li><li style="flex:1">400 </li></ul><p></p><p><strong>Rotor RPM </strong></p><p>• SR/C wing very small because rotor supports aircraft at low </p><p>speeds – wing can be sized for cruise </p><p>• Fixed-wing wing must be sized for low speed/landing • SR/C slowed rotor & small wing equivalent to fixed-wing’s </p><p>larger wing </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>5</p><p><strong>SR/C Electric Air Taxi </strong></p><p>Ø34’ </p><p></p><ul style="display: flex;"><li style="flex:1">54” Cabin Width </li><li style="flex:1">36’ </li></ul><p></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>6</p><p><strong>SR/C Electric Air Taxi– Features </strong></p><p>Slowed rotor enables </p><p>10’ diameter scimitar </p><p>tail prop rotates to provide counter torque for hover or thrust for forward flight <br>High inertia, low disc loaded rotor acts as </p><p>built-in parachute, but </p><p>safer because it works at any altitude / <br>Lightweight, low profile, streamlined </p><p>tilting hub greatly </p><p>reduces drag. No spindle, spindle high speed forward flight, low drag, low tip speed/noise, no retreating blade stall speed, and provides directional control housing, bearings or lead-lag hinges </p><p>Tall, soft mast isolates </p><p>airframe from rotor vibration for fixed-wing smoothness </p><p>Tilting mast controls </p><p>aircraft pitch at low speeds & rotor rpm for high cruise efficiency at high speeds </p><p>Mechanical flight </p><p>control linkages to optional pilot in parallel with actuators for true redundancy <br>Extreme energy absorbing fail safe landing gear up to <br>30 ft/s improves landing safety </p><p>Simple, light, </p><p>structurally efficient wing with no need for high lift devices <br>High aspect ratio wing with area optimized for cruise efficiency <br>Battery pack in nose to balance tail weight </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>7</p><p><strong>Performance Parameters </strong></p><p>Drag coefficients based on actual achieved data, not expected improvements 3200 lb empty weight with batteries 4000 lb max gross weight (800 lb max payload) </p><p>300 W-hr/kg battery energy density </p><p>Assumed margin for 0.5 Empty Weight Fraction at 600 ft/s tip speed Mission: 30 sec HOGE for takeoff, Climb at Vy to 5k ft, Cruise at 175 mph, <br>Descend at Vy, 2 min HOGE at landing (no reserve) </p><p><strong>Empty Wt (w/o batteries) vs. Rotor </strong><br><strong>Hover Tip Speed </strong><br><strong>Range at 175 mph vs. Payload for </strong><br><strong>Various Hover Tip Speeds </strong></p><p>2250 2200 2150 2100 2050 2000 1950 <br>200 180 160 140 120 100 <br>80 </p><p>2213 lbs <br>159 miles </p><p>D=46 miles </p><p>113 miles </p><p>D=213 lbs </p><p>600 ft/s 550 ft/s 500 ft/s </p><p>450 ft/s </p><p>60 40 </p><p>2000 lbs </p><p>20 <br>0</p><ul style="display: flex;"><li style="flex:1">400 </li><li style="flex:1">450 </li><li style="flex:1">500 </li><li style="flex:1">550 </li><li style="flex:1">600 </li><li style="flex:1">650 </li><li style="flex:1">700 </li><li style="flex:1">0</li><li style="flex:1">200 </li><li style="flex:1">400 </li><li style="flex:1">600 </li><li style="flex:1">800 </li><li style="flex:1">1000 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Rotor Hover Tip Speed, ft/s </strong></li><li style="flex:1"><strong>Payload, lbs </strong></li></ul><p></p><p>Note: 150 mph cruise will extend range by ~10% at 800 lb payload </p><p></p><ul style="display: flex;"><li style="flex:1">Figure 1 </li><li style="flex:1">Figure 2 </li></ul><p></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>8</p><p><strong>Air Taxi Concept Comparison </strong></p><p>• Compared three different configurations <br>• SR/C • Hex Tilt Rotor </p><p>• ‘T’ Tilt Rotor </p><p>• Used common assumptions and methods for all three concepts <br>• Based drag coefficients and parameters </p><p>on measured flight data from PAV </p><p>SR/C </p><p><strong>Carter PAV L/D vs. IAS </strong></p><p>14 12 </p><p>10 </p><p>8</p><p>Hex Tilt Rotor </p><p>Meas'd </p><p>Model <br>642</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">50 </li><li style="flex:1">100 </li><li style="flex:1">150 </li><li style="flex:1">200 </li><li style="flex:1">250 </li></ul><p></p><p><strong>IAS, mph </strong></p><p>Actual Measured Flight Data </p><p>Note: Data scatter mostly attributable to gathering data when developing rotor rpm / mast control algorithms and varying rotor rpm considerably </p><p>‘T’ Tilt Rotor </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>9</p><p><strong>Analysis Methods & Assumptions </strong></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Parameter </strong></li><li style="flex:1"><strong>Assumptions </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">Gross Weight </li><li style="flex:1">4000 lbs </li></ul><p>200 lbs per person </p><p>4 people max </p><p>Pilot/Pax Weight </p><ul style="display: flex;"><li style="flex:1">Empty Weight </li><li style="flex:1">Calc’d with same method for all – modified Raymer </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Battery & Drive Efficiency </li><li style="flex:1">0.92 </li></ul><p>80% </p><p>(top 10% unuseable with rapid charge, bottom 10% unuseable to avoid current spike) </p><p>Useable Battery Capacity <br>Scaled Linearly with Max Continuous Power </p><ul style="display: flex;"><li style="flex:1">0.4 lb/HP </li><li style="flex:1">Motor + Inverter Weight </li></ul><p>Assumed motor could be overloaded 1.87x for 30 sec for OEI </p><p>Limited current to 40 amp per wire, running multiple wires per leg to reach full current required. Per N.E.C., used AWG-10 with Class C Insulator <br>Wiring Weight <br>Used same coefficients on all concepts & appropriately scaled misc drags as derived from calibrating model to actual flight data from PAV <br>Drag Coefficients Hover Typical Mission <br>Hover Out of Ground Effect (HOGE) at 6k ft with 1.1x margin <br>30 sec hover, climb, cruise, descent, 30 sec hover </p><p>120 sec hover, climb, cruise, descent, 120 sec hover </p><p>+Reserve: 120 sec hover, 2nm divert, 120 sed hover <br>Planning Mission </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>10 </p><p><strong>Common Footprint </strong></p><p>• Footprint driven by interface with vertiports </p><p>• If certain size footprint can be justified, justification is applicable to all technologies </p><p>• Single Rotor SR/C & Hex Tilt Rotor have similar disc loadings </p><p>• ‘T’ tilt rotor has very high disc loading </p><p>39 ft </p><p><strong>‘T’ TR Hex TR SR/C </strong></p><p>Rotor Area, ft² Disc Loading, lb/ft² Total Hover HP </p><p>30 sec OEI HP </p><p>Cruise HP at 175 mph <br>144.9 <br>27.6 <br>774.0 </p><p>1869.6 467.8 </p><p>240 240 <br>791.5 <br>5.1 <br>368.4 <br>907.9 <br>4.4 <br>424.0 </p><p>N/A </p><p>207 </p><ul style="display: flex;"><li style="flex:1">Total Installed Cont HP 1099.2 390.1 </li><li style="flex:1">612.8 </li></ul><p></p><p>•••</p><p>‘T’ TR Rotor Area only includes 4 lifting rotors (tails rotors for trim control only) </p><p>SR/C Total Hover HP includes tail rotor power to counter torque All Hover HPs include 10% lift margin </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>11 </p><p><strong>Comparison Preliminary Results </strong></p><p>• ‘T’ Tilt Rotor has very high HP required due to disk loading – higher empty weight for installed HP • SR/C has better L/D @ 175 mph due to smaller wings & less wetted area from prop spinners, fuselage, & no LG sponsons </p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Empty Weight vs. Width </strong></li><li style="flex:1"><strong>Range vs. Payload </strong></li></ul><p></p><p>2,100 2,050 2,000 1,950 1,900 </p><p>1,850 </p><p>1,800 1,750 </p><p>1,700 </p><p>180 160 140 120 </p><p>100 </p><p>80 60 40 20 </p><p>0<br>SR/C - 40 ft </p><p>SR/C - 37 ft SR/C - 34 ft Hex TR - 40 ft Hex TR - 37 ft Hex TR - 34 ft 'T' TR - 40 ft 'T' TR - 37 ft 'T' TR - 34 ft <br>SR/C Hex TR T TR </p><p></p><ul style="display: flex;"><li style="flex:1">32 </li><li style="flex:1">34 </li><li style="flex:1">36 </li><li style="flex:1">38 </li><li style="flex:1">40 </li><li style="flex:1">42 </li><li style="flex:1">0</li><li style="flex:1">200 </li><li style="flex:1">400 </li><li style="flex:1">600 </li><li style="flex:1">800 </li><li style="flex:1">1000 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Overall Width, ft </strong></li><li style="flex:1"><strong>Payload, lbs </strong></li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>L/D vs. Airspeed </strong></li><li style="flex:1"><strong>Mileage vs. Payload </strong></li></ul><p></p><p>16 </p><p>14 </p><p>12 10 </p><p>8</p><p>1.4 1.2 <br>1<br>SR/C - 40 ft </p><p>SR/C - 40 ft </p><p>SR/C - 37 ft SR/C - 34 ft Hex TR - 40 ft Hex TR - 37 ft Hex TR - 34 ft 'T' TR - 40 ft 'T' TR - 37 ft 'T' TR - 34 ft <br>SR/C - 37 ft </p><p>SR/C - 34 ft </p><p>Hex TR - 40 ft Hex TR - 37 ft Hex TR - 34 ft 'T' TR - 40 ft 'T' TR - 37 ft 'T' TR - 34 ft <br>0.8 </p><p>0.6 </p><p>0.4 0.2 </p><p>0</p><p>64</p><p>2</p><p>0</p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">50 </li><li style="flex:1">100 </li></ul><p></p><p><strong>True Airspeed, mph </strong></p><p></p><ul style="display: flex;"><li style="flex:1">150 </li><li style="flex:1">200 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">200 </li><li style="flex:1">400 </li><li style="flex:1">600 </li><li style="flex:1">800 </li><li style="flex:1">1000 </li></ul><p></p><p><strong>Payload, lbs </strong></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>12 </p><p><strong>Comparison Preliminary Results </strong></p><p>• SR/C has farthest range with least energy used in typical mission, </p><p>due to better L/D at 175 mph </p><p>• ‘T’ Tilt rotor has low useable energy because of high empty weight </p><p>fraction. Has low percentage of energy available for cruise because </p><p>of high HOGE power requirements for planning / reserve. </p><p><strong>Useable Energy Budget, 800 lb payload, 34' width </strong></p><p>180 160 140 <br>R3. Reserve 2 min HOGE <br>120 </p><p>100 <br>80 60 40 20 </p><p>0</p><p>R2. 2 nm reserve at best endurance R1. Reserve 2 min HOGE </p><p>Reserve </p><p>P1. 90 sec + 90 sec add'l HOGE for planning </p><p>5. 30 sec HOGE </p><p>Add’l HOGE for Planning </p><p>4. Descend to Ldg Altitude 3. Cruise at 5000 at 175 mph 2. Climb at Max ROC to Cruise Alt 1. 30 sec HOGE </p><p>Typical Mission </p><p></p><ul style="display: flex;"><li style="flex:1">SR/C (123 mile) </li><li style="flex:1">Hex TR (110 mile) </li><li style="flex:1">'T' TR (49 mile) </li></ul><p></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>13 </p><p><strong>Extreme Energy Absorbing Landing Gear </strong></p><p>• Extreme energy absorbing – 24” stroke for </p><p>Carter Smart Strut </p><p>descent rates up to 24 ft/s <em>at touchdown </em><br>• Responds to impact speed for near constant </p><p>Belleville Stackup to control valve to keep pressure on piston near constant based on impact </p><p>deceleration across full throw of gear <br>• No rebound – no bouncing • Proven technology – used on all Carter </p><p>Air Over </p><p>Hydraulic for </p><p>Energy </p><p>prototypes <br>• Lightweight due to efficient energy absorption </p><p>Absorption </p><p>velocity </p><p>PAV Single Strut Design <br>Energy Absorbing <br>Cylinder <br>Automatic <br>Metering Valve </p><p>Hydraulic Pressure in <br>Lower Cylinder </p><p>for Gear Retract </p><p>Main Gear Trailing Arm </p><p>Torque Tube </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>14 </p><p><strong>Energy Absorbing Landing Gear Video </strong></p><p>Video also available on YouTube: <a href="/goto?url=https://www.youtube.com/watch?v=MntCeJRl2YE" target="_blank">https://www.youtube.com/watch?v=MntCeJRl2YE </a></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>15 </p><p><strong>Energy Absorbing Landing Gear </strong></p><p>Note near constant pressure over full stroke </p><p>100 <br>95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 <br>5</p><p><strong>Piston position (8.44" max) Valve position (.5" max) Pressure Top (3000 psi max) Pressure Bottom (3000 psi max) </strong></p><p>0</p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0.5 </li><li style="flex:1">1</li><li style="flex:1">1.5 </li><li style="flex:1">2</li></ul><p></p><p><strong>Time (s) </strong></p><p>Data from drop test shown in previous slide </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>16 </p><p><strong>Carter Scimitar Propeller </strong></p><p>• Highly swept to reduce apparent Mach number </p><p>– Allows higher CL’s, faster tip speeds, & thicker </p><p>airfoils </p><p>– Swept tip reduces noise </p><p>• Twist a compromise between high speed cruise & static/climb </p><p>• Lightweight composites 1/2 to 1/3 the </p><p>weight of conventional designs </p><p>• 100” diameter prop shown weighs 42 lb </p><p>• Tested at Mach 1 for cumulative 10 minutes </p><p>• Wide chord – blade not stalled </p><p>• Spinner nearly flat at prop root </p><p>– Reduces decreasing pressure gradient, keeping good airflow on prop root </p><p>• Cruise efficiencies of 90+% </p><p>• Static/climb efficiencies on order of 30% </p><p>better than conventional designs </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>17 </p><p><strong>Scimitar Propeller – Bearingless Design </strong></p><p>• Pitch change accomplished by twisting the spar • Eliminates spindle, spindle housing, and bearings used on conventional propeller – simple & lightweight </p><p>• Similar design used on Carter rotors which further eliminates lead/lag and coning hinges </p><p>Video also available on YouTube: <a href="/goto?url=https://www.youtube.com/watch?v=scrXVfwJ7hY" target="_blank">https://www.youtube.com/watch?v=scrXVfwJ7hY </a></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>18 </p><p>CARTER<strong>AVIATION TECHNOLOGIES </strong></p><p><strong>An Aerospace Research & Development Company </strong></p><p><strong>Jay Carter, Founder & CEO </strong></p><p><strong>CAFE Electric Aircraft Symposium July 23</strong><sup style="top: -0.5em;"><strong>rd</strong></sup><strong>, 2017 </strong></p><p><a href="/goto?url=http://www.CarterCopters.com" target="_blank">www.CarterCopters.com </a></p><p><sub style="top: 0.032em;">©</sub>W<sub style="top: 0.032em;">20</sub>i<sub style="top: 0.032em;">1</sub>c<sub style="top: 0.032em;">5 C</sub>h<sub style="top: 0.032em;">A</sub>i<sub style="top: 0.032em;">R</sub>t<sub style="top: 0.032em;">TE</sub>a<sub style="top: 0.032em;">R A</sub>F<sub style="top: 0.032em;">V</sub>a<sub style="top: 0.032em;">IAT</sub>l<sub style="top: 0.032em;">I</sub>l<sub style="top: 0.032em;">O</sub>s<sub style="top: 0.032em;">N</sub>,<sub style="top: 0.032em;">T</sub>T<sub style="top: 0.032em;">EC</sub>e<sub style="top: 0.032em;">HN</sub>x<sub style="top: 0.032em;">O</sub>a<sub style="top: 0.032em;">LO</sub>s<sub style="top: 0.032em;">GIES, LLC </sub></p><p><sub style="top: 0.092em;">SR/C is a trademark of Carter Aviation Technologies, L</sub>1<sub style="top: 0.092em;">LC</sub>9 </p><p><strong>Backup Slides </strong></p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>20 </p><p><strong>Mission Definition </strong></p><p>• Using same typical & planning missions as McDonald and German* </p><p>• Typical mission for operating cost only requires 30 sec hover for T.O. </p><p>& landing <br>• Worst case mission for planning (i.e. charge required before taking </p><p>off to fly a given mission) requires 120 sec T.O. & landing for given </p><p>mission + 120 sec T.O. & landing for reserve + 2 nm reserve cruise <br>• For sizing, assuming 4 min continuous hover </p><p>*McDonald, R. A., German, B.J., “eVTOL Energy Needs </p><p>for Uber Elevate,” Uber </p><p>Elevate Summit, Dallas, TX, April 2017. </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>21 </p><p><strong>Cruise Performance Model </strong></p><p>• Analysis conducted with Carter’s proprietary cruise analysis model </p><p>• For SR/C, developed mainly for cruise when rotor is unloaded </p><p>• Model calibrated to measured flight data for PAV. Inputs were scaled </p><p><strong>Carter PAV L/D vs. IAS </strong></p><p>appropriately for these concepts. </p><p>14 12 </p><p>10 </p><p>8</p><p>• Had to estimate drag contributions from different elements, since the aircraft is only instrumented to measure overall thrust* </p><p>• Interference & separation drags can </p><p>account for up to ~1/2 of total aircraft drag, and must be accounted for to allow accurate L/D prediction (based on flight test experience by Carter and </p><p>Bell Helicopter / Ken Wernicke) </p><p>Meas'd </p><p>Model <br>642</p><p>0</p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">50 </li><li style="flex:1">100 </li><li style="flex:1">150 </li><li style="flex:1">200 </li><li style="flex:1">250 </li></ul><p></p><p><strong>IAS, mph </strong></p><p>• Air taxi analysis breaks flight into short segments, incorporating climb, descent, and reserves </p><p>Note: Data scatter mostly attributable to gathering data </p><p>when developing rotor rpm / mast control algorithms </p><p>and varying rotor rpm considerably <br>* Overall drag is calculated based on thrust adjusted for rate of climb/descent – report with methods is available </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>22 </p><p><strong>Battery Assumptions </strong></p><p>• Using same rationale as </p><p>McDonald and German* </p><p>for useable battery capacity </p><p>• Top 10% & Bottom 10% </p><p>of capacity inaccessible </p><p>• 80% capacity accessible </p><p>DOD = Depth of Discharge </p><p>• Ignoring internal </p><p>resistance losses for this </p><p>analysis </p><p><strong>Ignored for this analysis </strong></p><p>*McDonald, R. A., German, B.J., “eVTOL Energy Needs for Uber Elevate,” Uber Elevate Summit, </p><p>Dallas, TX, April 2017. </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>23 </p><p><strong>Motor Overload Capacity </strong></p><p>• Overload capacity very dependent on specific motor – see examples below from various </p><p>sources (only shown to illustrate behavior – these aren’t the motors being used) </p><p>• Model with a simple empirical curve that mimics those trends, where C is a constant </p><p>퐶<br>푇푖푚푒 = </p><p>2</p><p>퐼<br>− 1 </p><p>퐼<sub style="top: 0.18em;">푟푎푡ꢀ푑 </sub></p><p>• Based on text in ‘Uber Elevate’, assume a motor that can be overloaded 1.5x for 90 seconds </p><p>(paper stated 1–2 min). Matching above formula to that data point, C = 22.5 </p><p><strong>t, sec I/Ir </strong></p><p>15 2.22 </p><p><strong>Thermal Limit assuming 90 sec @ 1.5x </strong></p><p>120 100 <br>80 </p><p>60 40 </p><p>20 <br>0</p><p><strong>30 1.87 </strong></p><p>45 1.71 </p><p>60 1.61 </p><p>90 1.50 <br>120 1.43 </p><p><strong>240 1.31 </strong></p><p>480 1.22 </p><p>1.87x for 30 sec OEI 1.31x for 4 min HOGE </p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">1.5 </li><li style="flex:1">2</li><li style="flex:1">2.5 </li><li style="flex:1">3</li></ul><p></p><p><strong>I / I_rated </strong></p><p>Data from manufacturer needed to improve this estimate </p><p>©2015 CARTER AVIATION TECHNOLOGIES, LLC </p><p>24 </p><p><strong>Empty Weight Estimation </strong></p><p>• Weight estimate for all concepts used same methodology </p><p>• Structures & Equipment Groups based on method in <br>Chapter 15 of Raymer, Daniel P: Aircraft Design: A Conceptual Approach </p><p>• Structures weights multiplied by 0.50 to reflect gains from carbon- </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages41 Page
-
File Size-