Physiological role of AMPAR nanoscale organization at basal state and during synaptic plasticities Benjamin Compans To cite this version: Benjamin Compans. Physiological role of AMPAR nanoscale organization at basal state and during synaptic plasticities. Human health and pathology. Université de Bordeaux, 2017. English. NNT : 2017BORD0700. tel-01753429 HAL Id: tel-01753429 https://tel.archives-ouvertes.fr/tel-01753429 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE SPÉCIALITÉ NEUROSCIENCES Par Benjamin COMPANS Rôle physiologique de l’organisation des récepteurs AMPA à l’échelle nanométrique à l’état basal et lors des plasticités synaptiques Sous la direction de : Eric Hosy Soutenue le 19 Octobre 2017 Membres du jury Stéphane Oliet Directeur de Recherche CNRS Président Jean-Louis Bessereau PU/PH Université de Lyon Rapporteur Sabine Levi Directeur de Recherche CNRS Rapporteur Ryohei Yasuda Directeur de Recherche Max Planck Florida Institute Examinateur Yukiko Goda Directeur de Recherche Riken Brain Science Institute Examinateur Daniel Choquet Directeur de Recherche CNRS Invité 1 Interdisciplinary Institute for NeuroSciences (IINS) CNRS UMR 5297 Université de Bordeaux Centre Broca Nouvelle-Aquitaine 146 Rue Léo Saignat 33076 Bordeaux (France) 2 Résumé Le cerveau est formé d’un réseau complexe de neurones responsables de nos fonctions cognitives et de nos comportements. Les neurones reçoivent via des contacts spécialisés nommés « synapses », des signaux d’autres neurones. Le rôle de la synapse est de convertir le signal électrique du neurone afférent en un signal chimique, via la libération de neurotransmetteurs. Ce signal chimique est ensuite retransformé par le neurone cible en signal électrique suite à l’activation de récepteurs aux neurotransmetteurs. Cependant, un neurone reçoit des milliers de signaux codés de manière spatio-temporelle venant de divers neurones. Le mécanisme par lequel les neurones reçoivent, intègrent et transmettent ces informations est très complexe et n'est toujours pas parfaitement compris. Dans les synapses excitatrices, les récepteurs AMPA (AMPARs) sont responsables de la transmission synaptique rapide. Les récents développements en microscopie de super résolution ont permis à la communauté scientifique de changer la vision de la transmission synaptique. Une première avancée fait suite à l’observation que les AMPARs ne sont pas distribués de façon homogène dans les synapses, mais sont organisés en nanodomaines de ~ 80 nm de diamètre contenant ~ 20 récepteurs. Ce contenu est un facteur important pour déterminer l'amplitude de la réponse synaptique. En raison de la basse affinité des AMPARs pour le glutamate, un AMPAR ne peut être activé que lorsqu'il est situé dans une zone de ~ 150 nm en face du site de libération des neurotransmetteurs. Récemment, il a été montré que les nanodomaines d’AMPARs sont situés en face de ces sites de libération, formant des nano-colonnes trans-synaptiques à l'état basal. Cette organisation précise à l’échelle nanométrique semble être un facteur clé dans l'efficacité de la transmission synaptique. Une autre avancée a été l'observation que les AMPARs diffusent à la surface des neurones et sont immobilisés à la synapse pour participer à la transmission synaptique. L'échange dynamique entre le pool diffusif d’AMPARs et les récepteurs immobilisés dans les nanodomaines participe au maintien de l’efficacité de la réponse synaptique lors de stimulations à hautes fréquences. L'objectif de ma thèse a été de déterminer le rôle des paramètres indiqués ci-dessus sur les propriétés de la transmission synaptique, à l'état basal et au cours de phénomènes dits de plasticité synaptique. Tout d'abord, nous avons identifié le rôle crucial de la Neuroligine dans l'alignement des nanodomaines d’AMPARs avec les sites de libération du glutamate. En plus de cela, nous avons mis en évidence l’impact de cet alignement sur l’efficacité de la transmission synaptique en perturbant celui-ci. En parallèle, nous avons démontré que les AMPARs désensibilisés sont plus mobiles à la membrane plasmatique que les récepteurs ouverts ou fermés, et ce, en raison d'une diminution de leur affinité pour les sites d’immobilisation synaptiques. Nous avons montré que ce mécanisme permettait aux synapses de récupérer plus rapidement de la désensibilisation et d'assurer la fidélité de la transmission synaptique lors de stimulations à hautes fréquences. Enfin, les synapses peuvent moduler leurs intensités de réponse grâce à des mécanismes de plasticité synaptique à long terme, et plus particulièrement, la dépression à long terme (LTD) qui correspond à un affaiblissement durable de ce poids synaptique. La LTD est importante dans certains processus cognitifs et pour la flexibilité comportementale, car elle semble liée à un mécanisme de tri sélectif des synapses en fonction de leur activité. À la suite des découvertes précédentes concernant le rôle de la nano-organisation dynamique des AMPARs pour réguler le poids et la fiabilité de la transmission synaptique, j'ai décidé d'étudier leur rôle dans l'affaiblissement et la sélection des synapses. J'ai découvert que la quantité d’AMPAR par nanodomaine diminue rapidement et durablement. Cette première phase semble due à une augmentation de l’internalisation des AMPARs. Dans un deuxième temps, la mobilité des AMPARs augmente suite à une réorganisation moléculaire de la synapse. Ce changement de mobilité des AMPARs permet aux synapses déprimées de maintenir leur capacité à répondre aux signaux neuronaux à hautes fréquences. Ainsi, nous proposons que l'augmentation de la mobilité des AMPARs au cours de la LTD permet de transmettre une réponse fidèle dans les synapses stimulées à hautes fréquences et donc de sélectivement les maintenir tout en éliminant les synapses inactives. Mots clés : transmission synaptique, récepteurs AMPA, organisation synaptique, microscopie à super-résolution, plasticité synaptique 3 Abstract The brain is a complex network of interconnected neurons responsible for all our cognitive functions and behaviors. Neurons receive inputs at specialized contact zones named synapses which convert an all or none electrical signal to a chemical one, through the release of neurotransmitters. This chemical signal is then turned back in a tunable electrical signal by receptors to neurotransmitters. However, a single neuron receives thousands of inputs coming from several neurons in a spatial- and temporal-dependent manner. The precise mechanism by which neurons receive, integrate and transmit these synaptic inputs is highly complex and is still not perfectly understood. At excitatory synapses, AMPA receptors (AMPARs) are responsible for the fast synaptic transmission. With the recent developments in super-resolution microscopy, the community has changed its vision of synaptic transmission. One breakthrough was the discovery that AMPARs are not randomly distributed at synapses but are organized in nanodomains of ~80 nm of diameter containing ~20 receptors. This content is an important factor since it will determine the intensity of the synaptic response. Due to their mM affinity for glutamate, AMPARs can only be activated when located in an area of ~150 nm in front of the neurotransmitter release site. Recently, AMPAR nanodomains have been shown to be located in front of glutamate release sites and to form trans-synaptic nanocolumns at basal state. Thus, the nanoscale organization of AMPARs regarding release sites seems to be a key parameter for the efficiency of synaptic transmission. Another breakthrough in the field was the observation that AMPARs diffuse at the cell surface and are immobilized at synapses to participate to synaptic transmission. The dynamic exchange between AMPAR diffusive pool and the receptors immobilized into the nanodomains participates to maintain the efficiency of synaptic response upon high-frequency stimulation. The overall aim of my PhD has been to determine the role of each above listed parameters on the intimate properties of synaptic transmission both at basal state and during synaptic plasticity. First, we identified the crucial role of Neuroligin in the alignment of AMPAR nanodomains with glutamate release sites. In addition, we managed to break this alignment to understand its impact on synaptic transmission properties. In parallel, we demonstrated that, due to a decrease in their affinity for synaptic traps, desensitized AMPARs diffuse more at the plasma membrane than opened or closed receptors. This mechanism allows synapses to recover faster from desensitization and ensure the fidelity of synaptic transmission upon high-frequency release of glutamate. Finally, synapses can modulate their strength through long-term synaptic plasticity, in particular, Long-Term Depression (LTD) corresponds to a long-lasting weakening of synaptic strength and is thought to be important in some cognitive processes
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages220 Page
-
File Size-