Hydroamination Feb 2011

Hydroamination Feb 2011

Catalytic Asymmetric Hydroaminations (And Hydroalkoxylations, But Mostly Hydroaminations) Anna Allen MacMillan Group Meeting February 16, 2011 Hydroamination (and Hydroalkoxylation): An Outline Brief Introduction to Hydroaminations Rare Earth Metal-Catalyzed Asymmetric Hydroaminations Intramolecular reactions Intermolecular reactions Group 4 Metal-Catalyzed Asymmetric Hydroaminations Cationic metal catalysts Neutral metal catalysts Late Transition Metal-Catalyzed Asymmetric Hydroaminations Iridium-catalyzed reactions Palladium-catalyzed reactions Gold-catalyzed reactions Rhodium-catalyzed reactions Base-Catalyzed Asymmetric Hydroaminations Brønsted Acid-Catalyzed Asymmetric Hydroaminations Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans. 2007, 5105. Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367. Hydroamination Reactions ! Amines are a valuable and commercially important class of compounds used for bulk chemicals specialty chemicals and pharmaceuticals synthesis of amines: OH NH2 O NH2 R R R R R R R R Br NH2 NO2 NH2 R R R R R R R R ! Most classical methods require refined starting materials and generate unwanted byproducts hydroamination reaction: NR2 R R2N H R R R H direct addition of an amine across a carbon-carbon multiple bond ! Hydroaminations are 100% atom economical and use simple and inexpensive starting materials Hydroamination Reactions hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond NR2 NR2 R R2N H R R R R2N H R R R R H H alkylamine vinylamine H H H H N N R R R NH2 R NH2 Why are hydroamination reactions not used more? Challenges: thermodynamically feasible (slightly exothermal) but entropically negative high reaction barrier repulsion between the nitrogen lone pair and the olefin/alkyne !-system regioselectivity (markovnikov vs. anti-markovnikov) for intermolecular reactions anti-markovnikov on the "Top 10 Challenges for Catalysis" in 1993 Haggins, J. Chem. Eng. News 1993, 71, 23. Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Hydroamination Reactions hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond NR2NR2 NR2NR2 R R R2NR2NH H R R R R R R R2NR2NH H R R R R R R R R H H H H alkylamine vinylamine H H H H H H H H N N N N R R R R R R NH2NH2 R R NH2NH2 Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Hydroamination Reactions hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond NR2NR2 NR2NR2 R R R2NR2NH H R R R R R R R2NR2NH H R R R R R R R R H H H H alkylamine vinylamine H H H H H H H H N N N N R R R R R R NH2NH2 R R NH2NH2 this talk focuses on generating enantioenriched amines Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Rare Earth Metal Catalyzed Hydroaminations Rare Earth Metal-Catalyzed Intramolecular Hydroaminations: Seminal Work ! Seminal work of lanthanide-catalyzed hydroamination reaction was reported in 1989 by Marks using metallocene-based catalysts O La X(TMS) La H 2 Sm O 2 X = CH, N H N 1-5 mol% catalyst Me generally produces the exocyclic H2N n hydroamination product n H H H H N N Me N H Me Me N N Me Me Me Me Me TOF: 13 (25 ºC) 125 (25 ºC) 5 (60 ºC) 13 (80 ºC) 84 (25 ºC) (h–1) 140 (60 ºC) Gagné, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108. Gagné, M. R.; Nolan, S. P.; Marks, T. J. Organometallics 1990, 9, 1716. Mechanism for Rare Earth Metal-Catalyzed Hydroaminations ! Transformation proceeds through a rare earth metal amido species !+ H !– Ln X(TMS) R 2 R NH2 Ln N !– !+ XH(TMS)2 catalyst activation X = CH, N H N Ln H N R R olefin insertion protonolysis rate-limiting step "H ~ –13 kcal/mol "H ~ 0 kcal/mol R NH2 HN For aminoalkynes, aminoallenes, Ln conjugated aminodienes R olefin insertion: "H ~ –19 to –35 kcal/mol protonolysis: "H ~ 0 to +4 kcal/mol Rare Earth Metal Catalysts for Intramolecular Hydroamination ! Catalytic activity in rare earth metal-catalyzed hydroamination of aminoalkenes generally increase with increased accessibility to the metal center Me Me H catalyst Me N H2N Me Me Lu CH(TMS)2 Sm CH(TMS)2 La CH(TMS)2 0.977 Å 1.079 Å 1.160 Å <1 h–1 (80 ºC) 48 h–1 (60 ºC) 95 h–1 (25 ºC) increasing ionic radii / decreased steric encumbrance increasing reactivity Si Si Lu CH(TMS)2 Lu CH(TMS)2 Lu CH(TMS)2 N <1 h–1 (80 ºC) 75 h–1 (80 ºC) 90 h–1 (25 ºC) ! Trend usually holds for alkenes using metallocene catalysts, but alkynes often show reverse trend Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work ! The first chiral lanthanocene catalysts were reported by Marks in 1992 Me Me Me Si Ln X(SiMe3)2 R* = Cp Cp Cp R* Me Me Me Me Me Me Ph Ln = La, Nd, Sm, Y, Lu X = CH, N (+)-neomenthyl (–)-menthyl (–)-phenylmenthyl Si Sm N(SiMe3)2 H N R* Me Me Me R* = (–)-menthyl H2N Me –30 ºC Me 74% ee (S) Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003. Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work ! The first chiral lanthanocene catalysts were reported by Marks in 1992 Me Me Me Si R* = Ln X(SiMe3)2 Cp Cp Cp R* Me Me Me Me Me Me Ph Ln = La, Nd, Sm, Y, Lu X = CH, N (+)-neomenthyl (–)-menthyl (–)-phenylmenthyl Ha H H e H N N Si favoured Me favoured Si Ln Ln N He Ha R* R* Ha H He N HN Me Si Ln disfavoured disfavoured Si Ln N He Ha R* R* Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003. Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work ! The first chiral lanthanocene catalysts were reported by Marks in 1992 Me Me Me Si R* = Ln X(SiMe3)2 Cp Cp Cp R* Me Me Me Me Me Me Ph Ln = La, Nd, Sm, Y, Lu X = CH, N (+)-neomenthyl (–)-menthyl (–)-phenylmenthyl ionic radii of rare earth metal effects the enantioselectivity maximum enantioseletivity observed with samarocene Hultzsch, K.C. Adv. Synth. Catal, 2005, 347, 367. Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003. Rare Earth Metal-Catalyzed Asymmetric Hydroamination: Seminal Work ! The first chiral lanthanocene catalysts were reported by Marks in 1992 Me Me Me Si Ln X(SiMe3)2 R* = Cp Cp Cp R* Me Me Me Me Me Me Ph Ln = La, Nd, Sm, Y, Lu X = CH, N (+)-neomenthyl (–)-menthyl (–)-phenylmenthyl catalyst H Si Si N Sm N(SiMe3)2 (Me3Si)2N Sm Me H2N 25 ºC (–)-menthyl (–)-menthyl 62% ee (S) 60% ee (S) you can obtain 61% ee from a Si Si Si Sm N(SiMe3)2 (Me3Si)2N Y Sm CH(SiMe3)2 racemic precatalyst (±) ee of product is independent (+)-neomenthyl (+)-neomenthyl (+)-neomenthyl of ee of precatalyst 55% ee (R) 50% ee (R) 61% ee (R) Hong, S.; Marks, T. J.; Acc. Chem. Res. 2004, 37, 673. Gagné, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Marks, T. J.; Stern, C. L. Organometallics, 1992, 11, 2003. Epimerization of Chiral Lanthanocene Complexes ! Marks' chrial lanthanocene complexes were found to epimerize under hydroamination conditions NHR Si Si Si Ln NHR Ln Ln N(SiMe3)2 NHR NH2R NH2R R* NH2R R* *R H But why does racemic catalyst give enantioenriched product? Si Si Si Ln E(SiMe3)2 Ln E(SiMe3)2 Ln E(SiMe3)2 (+)-neomenthyl (–)-menthyl (–)-phenylmenthyl 80:20 (R):(S) >95:5 (S):(R) 90:10 (S):(R) equilbrium ratio are independent of the epimer ratio of the precatalyst Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands ! In 2003, new chiral hydroamination catalysts based on non-metallocene ligands were reported Chiral Bisarylamido and Aminophenolate Catalysts t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu OMe O Me N (THF)2 Me N N(SiHMe2)2 Me N Ln N(SiHMe2)2 La Y Me N THF Me N Me N N(SiHMe2)2 OMe O t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu Y 336 h, 50% ee 192 h, 21% ee 24 h, 11% ee Sm 168 h, 33% ee t-Bu La 168 h, 18% ee t-Bu O Me Me H Me N (THF)2 catalyst N La NH Me N(SiHMe ) 2 Me N O 2 2 60-70 ºC Me t-Bu 100% cv Me Complexes were shown to be configurationally t-Bu stable under hydroamination conditions 40 h, 61% ee O'Shaughnessy, P. N.; Scott, P. Tetrahedron: Asymmetry 2003, 14, 1979 Chiral Rare Earth Metal Catalysts Based on Non-Cyclopentadienyl Ligands ! Hultzsschch's' s3 3,3,3'-'b-bisi(st(rtirsiasaryrylslislyilyl)lb)bininaapphhththoolalatete c acatatalylsyts tc acann a allolloww f ofor rh higighheer re ennaanntiotioseselelectcivtiivtyity Me R1 R2 H N catalyst, Ln = Y Me NH2 22 ºC 2 R Si Me 3 >98% cv R1 Me2N O Ln O H H H Me N N N N 2 Me Me Me Ph Si Me Me Me Me 2 h, 53% ee 20 h, 83% ee 1.2 h, 65% ee, 1.4:1 dr Me 3 H H N N favoured Me disfavoured Me Gribkov, D.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    73 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us