Group Theory

Group Theory

Algebra Math Notes • Study Guide Group Theory Table of Contents Groups..................................................................................................................................................................... 3 Binary Operations ............................................................................................................................................................. 3 Groups .............................................................................................................................................................................. 3 Examples of Groups ......................................................................................................................................................... 4 Cyclic Groups ................................................................................................................................................................... 5 Homomorphisms and Normal Subgroups ......................................................................................................................... 5 Cosets and Quotient Groups ............................................................................................................................................ 6 Isomorphism Theorems .................................................................................................................................................... 7 Product Groups ................................................................................................................................................................ 8 Finite Groups........................................................................................................................................................... 9 Permutations and G-sets .................................................................................................................................................. 9 Combinatorial Equations ................................................................................................................................................ 10 p-Sylow Subgroups ........................................................................................................................................................ 10 Automorphisms ..................................................................................................................................................... 12 Inner and Outer Automorphisms..................................................................................................................................... 12 Complete Groups ........................................................................................................................................................... 12 Holomorph ...................................................................................................................................................................... 13 Symmetry .............................................................................................................................................................. 14 Symmetry ....................................................................................................................................................................... 14 2-D Symmetry Groups .................................................................................................................................................... 14 3-D Symmetry Groups .................................................................................................................................................... 15 Permutation Groups .............................................................................................................................................. 16 Symmetric Group............................................................................................................................................................ 16 Transitive Groups ........................................................................................................................................................... 16 Primitive Groups ............................................................................................................................................................. 17 Steiner Systems; Affine and Projective Spaces .............................................................................................................. 18 Mathieu Groups .............................................................................................................................................................. 19 Pólya Enumeration ......................................................................................................................................................... 20 Normal Series ....................................................................................................................................................... 22 Composition Series ........................................................................................................................................................ 22 Commutators and Derived Groups ................................................................................................................................. 22 Solvable Groups ............................................................................................................................................................. 23 Hall Subgroups ............................................................................................................................................................... 23 Supersolvable and Nilpotent Groups .............................................................................................................................. 24 Frattini Subgroup ............................................................................................................................................................ 25 Extensions and Cohomology ................................................................................................................................ 26 The Extension Problem .................................................................................................................................................. 26 Operator Groups............................................................................................................................................................. 27 Semidirect Product ......................................................................................................................................................... 27 Cohomology: Background .............................................................................................................................................. 29 Factor Sets: The Second Cohomology Group ................................................................................................................ 29 Theorems ....................................................................................................................................................................... 31 Transfer .......................................................................................................................................................................... 31 Derivations: The First Cohomology Group ..................................................................................................................... 32 Projective Representations and the Schur Multiplier ...................................................................................................... 33 Abelian Groups ..................................................................................................................................................... 34 Finite Abelian Groups ..................................................................................................................................................... 34 Infinite Abelian Groups ................................................................................................................................................... 34 Divisible Groups ............................................................................................................................................................. 35 Pure Subgroups.............................................................................................................................................................. 36 Direct Sum Decompositions ........................................................................................................................................... 36 Subgroups of ℚ .............................................................................................................................................................. 37 1 Free Groups .......................................................................................................................................................... 38 Free Groups ................................................................................................................................................................... 38 Todd-Coxeter Algorithm ................................................................................................................................................. 39 Fundamental Group and Nielsen-Schreier Theorem .....................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    58 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us