
<p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>Outline </p><p>1 Overview </p><p>11</p><p>13</p><p>2 Revisiting Equilibrium Considerations </p><p>2.1 What is Meant by Thermal Equilibrium? . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Non-Equilibrium Carrier Concentrations . . . . . . . . . . . . . . . . . . . . . . . . . </p><p>3 Recombination and Generation </p><p>3.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . </p><p>3</p><p>3</p><p>4 Continuity Equations </p><p>4.1 Minority Carrier Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . </p><p>5</p><p>5</p><p>5 Quasi-Fermi Levels </p><p>8</p><p>1 Overview </p><p>So far, we have only discussed charge carrier concentrations under equilibrium conditions. Since no current can flow in thermal equilibrium, this particular case isn’t much interest to us in trying to create electronic devices. Therefore, in this lecture, we discuss the situations and governing equations in which a charge carrier responds under non-equilibrium conditions. Topics to be covered include: </p><p>• Recombination and Generation: An increase (generation) or decrease (recombination) in charge carrier concentrations away from or towards equilibrium. (e.g. due to absorption of light) </p><p>• Current Continuity: Charge conservation, applied in the context of drift/diffusion. • Minority Carrier Diffusion Equations: Minority carrier diffusion in the presence of a large majority carrier concentration. </p><p>• Quasi-Fermi Levels: Treating carrier densities under non-equilibrium conditions. </p><p>2 Revisiting Equilibrium Considerations </p><p>2.1 What is Meant by Thermal Equilibrium? </p><p>When we discussed equilibrium charge carrier concentrations, it was argued that the production of charge carriers was thermally activated. This was shown to be true regardless of whether or not the semiconductor was intrinsic or extrinsic. When a semiconductor is intrinsic, the thermal energy necessary for charge carrier production is the bandgap energy E<sub style="top: 0.1408em;">G</sub>, which corresponds to the energy needed to break a Silicon-Silicon covalent bond. For an extrinsic semiconductor, this new amount of thermal energy is the dopant ionization energy, but it is still thermal energy! (See Figure 1). </p><p>At thermal equilibrium, charge carrier production is governed by thermal energy. </p><p>When we discussed transport, we assumed that the magnitude(s) of any applied electric field(s) was low enough so as not to change the equilibrium carrier concentrations. We spoke generally, </p><p>1</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>Figure 1: (a) The bandgap energy is the minimum energy for electron-hole production in an intrinsic semiconductor (b) The dopant ionization energy is the minimum energy for electron (donor) or hole (acceptor) production in an extrinsic semiconductor. </p><p>Figure 2: An intrinsic semiconductor in thermal equilibrium (Neamen 4th edition). The rate of generation exactly balances the rate of recombination. </p><p>referring to the equilibrium carrier concentrations as n, p. We need to refine this notation to differentiate between equilibrium and non-equilibrium conditions. </p><p>The charge carrier concentrations at thermal equilibrium are denoted n<sub style="top: 0.1364em;">0</sub>, p<sub style="top: 0.1364em;">0 </sub></p><p>Carrier concentrations at equilbrium exist due to a balance between the rate at which they are produced and the rate at which they are destroyed. We refer to these as the rate of generation and recombination respectively. Thus, it is more appropriate to think of thermal equilibrium as a steady-state condition wherein the rate of generation is equal to the rate of recombination. </p><p>At thermal equilbrium, the rate of generation equals the rate of recombination </p><p>We can represent this visually in Figure 2 for an intrinsic semiconductor at room temperature. </p><p>2</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>2.2 Non-Equilibrium Carrier Concentrations </p><p>Under non-equilibrium conditions, an excess or deficiency of charge carriers exists in a semiconductor. Equivalently, when an excess of charge carriers exists in a semiconductor, the semiconductor will be in a non-equilibrium state. We define the excess charge carrier concentrations ∆n ∆p as follows: </p><p>∆n = n − n<sub style="top: 0.1363em;">0 </sub><br>∆p = p − p<sub style="top: 0.1363em;">0 </sub></p><p>Thus, it can be seen that when ∆n, ∆p > 0 an excess of carriers exists whereas when ∆n, ∆p < 0 a deficiency of carriers exists. </p><p>∆n, ∆p > 0 =⇒ excess charge carriers <br>∆n, ∆p < 0 =⇒ deficiency of charge carriers </p><p>We can choose to discuss non-equilibrium conditions in terms of the excess carrier concentrations or the total carrier concentrations interchangeably. It turns out that the behavior of some devices is governed almost exclusively by the excess charge carrier concentrations. In such cases, we will work exclusively with excess charge carrier concentrations. The corresponding total carrier concentrations under non-equilibrium conditions are, </p><p>n = ∆n + n<sub style="top: 0.1363em;">0 </sub>p = ∆p + p<sub style="top: 0.1363em;">0 </sub></p><p>From this, it is immediately evident that under non-equilibrium conditions, the np product is no longer equal to n<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2547em;">i </sub>. </p><p>Under non-equilbrium conditions, np = n<sub style="top: 0.2547em;">i</sub><sup style="top: -0.3299em;">2 </sup></p><p>To restore equilibrium, the semiconductor will either seek to decrease its carrier concentration through net recombination or increase its carrier concentration through net generation. </p><p>np > n<sup style="top: -0.3753em;">2</sup><sub style="top: 0.2248em;">i </sub></p><p>(net recombination) <br>(net generation) </p><p>np < n<sup style="top: -0.3754em;">2</sup><sub style="top: 0.2247em;">i </sub></p><p>3 Recombination and Generation </p><p>3.1 Generation </p><p>There are several ways of creating an excess of charge carriers. The most familiar one is light absorption – which occurs when we shine light having higher energy than the bandgap energy onto the semiconductor. This leads to the production of excess charge carriers referred to as </p><p>generation. </p><p>E<sub style="top: 0.1481em;">photon </sub>> E<sub style="top: 0.1408em;">G </sub>=⇒ light absorption <br>3</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>dn dt </p><p></p><ul style="display: flex;"><li style="flex:1">Generation </li><li style="flex:1">> 0 will occur whenever there is a deficiency of charge carriers np < n<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2546em;">i </sub>. There- </li></ul><p>fore, we may start by assuming that n<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2546em;">i </sub>− np is somewhat of a driving force for the generation process. The larger the difference, the greater the generation rate. Defining a proportionality constant α<sub style="top: 0.1364em;">r</sub>, we can write: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>dn dt </p><ul style="display: flex;"><li style="flex:1">dn<sub style="top: 0.1364em;">0 </sub>d∆n </li><li style="flex:1">d∆n </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li><li style="flex:1">=</li></ul><p></p><p>= α<sub style="top: 0.1364em;">r </sub>n<sup style="top: -0.3753em;">2</sup><sub style="top: 0.2247em;">i </sub>− np </p><ul style="display: flex;"><li style="flex:1">dt </li><li style="flex:1">dt </li><li style="flex:1">dt </li></ul><p></p><p>Using the expressions for the total carrier concentrations, we can write: </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>d∆n </p><p>= α<sub style="top: 0.1363em;">r </sub>n<sup style="top: -0.3754em;">2</sup><sub style="top: 0.2247em;">i </sub>− (n<sub style="top: 0.1363em;">0 </sub>+ ∆n)(p<sub style="top: 0.1363em;">0 </sub>+ ∆p) </p><p>dt </p><p>This expression can be simplified using the fact that ∆n = ∆p. Excess electrons are generated at the same rate as excess holes. </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p>ꢁ</p><p>d∆n </p><p>= α<sub style="top: 0.1363em;">r </sub>n<sup style="top: -0.3753em;">2</sup><sub style="top: 0.2247em;">i </sub>− (n<sub style="top: 0.1363em;">0 </sub>+ ∆n)(p<sub style="top: 0.1363em;">0 </sub>+ ∆n) </p><p>dt </p><p>ꢀ</p><p>= α<sub style="top: 0.1363em;">r </sub>n<sup style="top: -0.3754em;">2</sup><sub style="top: 0.2247em;">i </sub>− (n<sub style="top: 0.1363em;">0</sub>p<sub style="top: 0.1363em;">0 </sub>+ ∆n(n<sub style="top: 0.1363em;">0 </sub>+ p<sub style="top: 0.1363em;">0</sub>) + ∆n<sup style="top: -0.3754em;">2</sup>) <br>Since n<sub style="top: 0.1363em;">0</sub>p<sub style="top: 0.1363em;">0 </sub>= n<sup style="top: -0.3299em;">2</sup><sub style="top: 0.2546em;">i </sub>, we can further simplify to the following: </p><p>d∆n </p><p>= −α<sub style="top: 0.1363em;">r</sub>∆n (n<sub style="top: 0.1363em;">0 </sub>+ p<sub style="top: 0.1363em;">0 </sub>+ ∆n) </p><p>dt </p><p>To simplify further, we make what is known as the low-level injection approximation. This assumes that we are interested in a small concentration of minority carriers, in the presence of a large concentration of majority carriers. Mathematically speaking, we make the following: </p><p></p><ul style="display: flex;"><li style="flex:1">n<sub style="top: 0.1363em;">0 </sub>>> p<sub style="top: 0.1363em;">0</sub>, ∆p << n<sub style="top: 0.1363em;">0 </sub></li><li style="flex:1">(N<sub style="top: 0.2862em;">D</sub><sup style="top: -0.3823em;">+ </sup>>> N<sub style="top: 0.2862em;">A</sub><sup style="top: -0.3823em;">−</sup>) </li></ul><p></p><ul style="display: flex;"><li style="flex:1">p<sub style="top: 0.1363em;">0 </sub>>> n<sub style="top: 0.1363em;">0</sub>, ∆n << p<sub style="top: 0.1363em;">0 </sub></li><li style="flex:1">(N<sub style="top: 0.2862em;">A</sub><sup style="top: -0.3823em;">+ </sup>>> N<sub style="top: 0.2862em;">D</sub><sup style="top: -0.3823em;">−</sup>) </li></ul><p></p><p>electrons are minority carriers in a p-type semiconductor holes are minority carriers in a n-type semiconductor </p><p>This approximation leads to the following expression: </p><p>d∆n <br>= −α<sub style="top: 0.1364em;">r</sub>p<sub style="top: 0.1364em;">0</sub>∆n dt </p><p>This equation has the following exponential solution in time, <br>∆n = ∆n(0)e<sup style="top: -0.3753em;">−α p t </sup></p><p>r</p><p>0</p><p>= (n(0) − n<sub style="top: 0.1364em;">0</sub>) e<sup style="top: -0.3753em;">−α p t </sup></p><p>r</p><p>0</p><p>1</p><p>α<sub style="top: 0.0831em;">r</sub>p<sub style="top: 0.0922em;">0 </sub></p><p>We can also define a time constant in this exponential decay τ<sub style="top: 0.1364em;">n </sub>= </p><p>as the minority carrier </p><p>4</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>lifetime for electrons. This leads to the following expressions: </p><p>t</p><p>∆n = ∆n(0)e<sup style="top: -0.4413em;">− </sup></p><p>τn</p><p>t</p><p>= (n(0) − n<sub style="top: 0.1364em;">0</sub>) e<sup style="top: -0.4413em;">− </sup></p><p>τn</p><p>Defining the generation rate G<sub style="top: 0.1408em;">∆n </sub>= G<sub style="top: 0.1408em;">∆p </sub>= G<sub style="top: 0.1408em;">∆</sub>, we can write </p><p></p><ul style="display: flex;"><li style="flex:1">d∆n </li><li style="flex:1">∆n </li><li style="flex:1">∆p </li></ul><p></p><p>G<sub style="top: 0.1407em;">∆ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">= − </li><li style="flex:1">= − </li></ul><p></p><p>dt </p><p></p><ul style="display: flex;"><li style="flex:1">τ<sub style="top: 0.1363em;">n </sub></li><li style="flex:1">τ<sub style="top: 0.1363em;">n </sub></li></ul><p></p><p>Since excess carriers are always generated in pairs, the excess carrier generation rate has to equal the negative of the excess carrier recombination rate. </p><p></p><ul style="display: flex;"><li style="flex:1">∆n </li><li style="flex:1">∆p </li></ul><p></p><p>R<sub style="top: 0.1408em;">∆ </sub>= −G<sub style="top: 0.1408em;">∆ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">τ<sub style="top: 0.1364em;">n </sub></li><li style="flex:1">τ<sub style="top: 0.1364em;">n </sub></li></ul><p></p><p>The corresponding expressions for the behavior of excess holes with minority carrier lifetime τ<sub style="top: 0.1363em;">p </sub>= in an n-type semiconductor is given by: </p><p>1</p><p>α<sub style="top: 0.083em;">r</sub>n<sub style="top: 0.0922em;">0 </sub></p><p>t</p><p>∆p = ∆p(0)e<sup style="top: -0.5382em;">− </sup></p><p>τp</p><p></p><ul style="display: flex;"><li style="flex:1">∆p </li><li style="flex:1">∆n </li></ul><p></p><p>τ<sub style="top: 0.1363em;">p </sub></p><p>G<sub style="top: 0.1407em;">∆ </sub>= − </p><p>= − </p><p>τ<sub style="top: 0.1363em;">p </sub></p><p></p><ul style="display: flex;"><li style="flex:1">∆p </li><li style="flex:1">∆n </li></ul><p></p><p>τ<sub style="top: 0.1363em;">p </sub></p><p>R<sub style="top: 0.1407em;">∆ </sub></p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">=</li></ul><p></p><p>τ<sub style="top: 0.1363em;">p </sub></p><p>Figure 3 summarizes the low-level injection approximations made above. </p><p>4 Continuity Equations </p><p>Since charge is conserved, the current flowing in a semiconductor must not change spatially, except for if the charge carrier concentration changes with time (e.g. under non-equilibrium conditions). This can be shown through some simple bookkeeping of the charge carrier concentrations. (Figure 4) </p><p>1 dJ<sub style="top: 0.1313em;">p </sub></p><p>dp </p><p>−</p><p>+ G<sub style="top: 0.1364em;">p </sub>− R<sub style="top: 0.1364em;">p </sub>= </p><p>e dx </p><p>1 dJ<sub style="top: 0.1363em;">n </sub></p><p>dt dn </p><p>+ G<sub style="top: 0.1364em;">n </sub>− R<sub style="top: 0.1364em;">n </sub>= </p><p></p><ul style="display: flex;"><li style="flex:1">e dx </li><li style="flex:1">dt </li></ul><p></p><p>These expressions are known as current continuity equations and they relate transport to generation and recombination processes in a semiconductor. </p><p>4.1 Minority Carrier Diffusion Equations </p><p>When there is no electric field, and therefore no drift current, the current will be exclusively diffusive. Substituting the diffusion current expression into the current continuity equations yields </p><p>5</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>Figure 3: (a) Low level injection of an n-type semiconductor and (b) p-type semiconductor. <br>Figure 4: Simple cartoon for accounting for charge conservation for the derivation of currentcontinuity expressions.(from ece colorado) </p><p>6</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>the following equations for electrons and holes. </p><p>d<sup style="top: -0.3299em;">2</sup>p dx<sup style="top: -0.2626em;">2 </sup>dp </p><p>D<sub style="top: 0.1364em;">p </sub></p><p>+ G<sub style="top: 0.1364em;">p </sub>− R<sub style="top: 0.1364em;">p </sub>= </p><p>dt </p><ul style="display: flex;"><li style="flex:1">dn </li><li style="flex:1">d<sup style="top: -0.3298em;">2</sup>n </li></ul><p>dx<sup style="top: -0.2627em;">2 </sup></p><p>D<sub style="top: 0.1364em;">n </sub></p><p>+ G<sub style="top: 0.1363em;">n </sub>− R<sub style="top: 0.1363em;">n </sub>= </p><p>dt </p><p>The terms G<sub style="top: 0.1363em;">p</sub>, G<sub style="top: 0.1363em;">n </sub>and R<sub style="top: 0.1363em;">p</sub>, R<sub style="top: 0.1363em;">n </sub>denote the total generation and recombination rates for electrons and holes. They are related to the equilibrium and excess generation rates as follows: </p><p>dn dt dn<sub style="top: 0.1363em;">0 </sub>d∆n </p><p>G<sub style="top: 0.1363em;">n </sub>= </p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li><li style="flex:1">= G + G<sub style="top: 0.1408em;">∆n </sub></li></ul><p></p><p>n<sub style="top: 0.0922em;">0 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">dt </li><li style="flex:1">dt </li></ul><p>dp dt dp<sub style="top: 0.1363em;">0 </sub>d∆p </p><p>G<sub style="top: 0.1363em;">p </sub>= </p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">+</li><li style="flex:1">= G + G<sub style="top: 0.1408em;">∆p </sub></li></ul><p></p><p>p<sub style="top: 0.0922em;">0 </sub></p><p></p><ul style="display: flex;"><li style="flex:1">dt </li><li style="flex:1">dt </li></ul><p></p><p>We know that at equilibrium, electrons generate and recombine at the same rates (otherwise there would be current flow!): </p><p>G<sub style="top: 0.1364em;">n </sub>= R<sub style="top: 0.1364em;">n </sub></p><p></p><ul style="display: flex;"><li style="flex:1">0</li><li style="flex:1">0</li></ul><p></p><p>We don’t know very much regarding the relationship between G<sub style="top: 0.1407em;">∆n </sub>and R<sub style="top: 0.1407em;">∆n</sub>. However, we note that these not be equal to each other at equilibrium. Electrons or holes can be generated externally in pairs, such that G<sub style="top: 0.1407em;">∆n </sub>= G<sub style="top: 0.1407em;">∆p </sub>= G. We can therefore just use a generic G accounting for the excess carrier generation rate. What about the rate of recombination? We already worked this out. The result is: </p><p></p><ul style="display: flex;"><li style="flex:1">∆n </li><li style="flex:1">∆p </li></ul><p></p><p>G<sub style="top: 0.1407em;">∆n </sub>= − </p><p>= − </p><p></p><ul style="display: flex;"><li style="flex:1">τ<sub style="top: 0.1363em;">n </sub></li><li style="flex:1">τ<sub style="top: 0.1363em;">p </sub></li></ul><p></p><p>Therefore, we have the following, after making the appropriate substitutions into the diffusion equation. </p><p>d<sup style="top: -0.3299em;">2</sup>p dx<sup style="top: -0.2627em;">2 </sup>d<sup style="top: -0.3299em;">2</sup>n dx<sup style="top: -0.2626em;">2 </sup><br>∆p </p><p>τ<sub style="top: 0.1363em;">p </sub></p><p>dp dt </p><p>D<sub style="top: 0.1363em;">p </sub></p><p></p><ul style="display: flex;"><li style="flex:1">+ G − </li><li style="flex:1">=</li></ul><p>=</p><p>∆n </p><p>τ<sub style="top: 0.1364em;">n </sub></p><p>dn dt </p><p>D<sub style="top: 0.1364em;">n </sub></p><p>+ G − <br>Under steady-state conditions, and in the absence of excess carrier generation, these reduce to: </p><p>d<sup style="top: -0.3299em;">2</sup>p ∆p </p><p>D<sub style="top: 0.1363em;">p </sub>D<sub style="top: 0.1363em;">n </sub></p><p>−</p><p>= 0 = 0 </p><p>dx<sup style="top: -0.2626em;">2 </sup></p><p>τ<sub style="top: 0.1364em;">p </sub></p><p>d<sup style="top: -0.3299em;">2</sup>n ∆n </p><p>−</p><p>dx<sup style="top: -0.2627em;">2 </sup></p><p>τ<sub style="top: 0.1363em;">n </sub></p><p>When we are interested in minority carriers greatly exceeding their equilibrium values we have the following, </p><p>p = p<sub style="top: 0.1364em;">0 </sub>+ ∆p ≈ ∆p n = n<sub style="top: 0.1364em;">0 </sub>+ ∆n ≈ ∆n </p><p>7</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>This leads to the minority carrier diffusion equations at steady state. </p><p>d<sup style="top: -0.3299em;">2</sup>∆p ∆p </p><p>D<sub style="top: 0.1364em;">p </sub>D<sub style="top: 0.1363em;">n </sub></p><p>−</p><p>= 0 = 0 </p><p>dx<sup style="top: -0.2626em;">2 </sup></p><p>τ<sub style="top: 0.1364em;">p </sub></p><p>d<sup style="top: -0.3299em;">2</sup>∆n ∆n </p><p>−</p><p>dx<sup style="top: -0.2627em;">2 </sup></p><p>τ<sub style="top: 0.1363em;">n </sub></p><p>This has solutions of the form: </p><p>x</p><p>∆p = ∆p(x = 0)e<sup style="top: -0.5382em;">− </sup></p><p>Lp</p><p>x</p><p>∆n = ∆n(x = 0)e<sup style="top: -0.4413em;">− </sup></p><p>Ln</p><p>Where the quantity L<sub style="top: 0.1364em;">p </sub>is referred to as the minority carrier diffusion length. </p><p>√</p><p>The minority carrier diffusion length of electrons is L<sub style="top: 0.1364em;">n </sub>= D<sub style="top: 0.1364em;">n</sub>τ<sub style="top: 0.1364em;">n </sub></p><p>p</p><p>The minority carrier diffusion length of holes is L<sub style="top: 0.1363em;">p </sub>= D<sub style="top: 0.1363em;">p</sub>τ<sub style="top: 0.1363em;">p </sub></p><p>5 Quasi-Fermi Levels </p><p>The Fermi level is defined at thermal equilibrium. It does not apply generally under non-equilibrium conditions. </p><p></p><ul style="display: flex;"><li style="flex:1">E</li><li style="flex:1">−E </li></ul><p>F</p><p>kiTb</p><p>n<sub style="top: 0.1363em;">0 </sub>= n<sub style="top: 0.1363em;">i</sub>e </p><p></p><ul style="display: flex;"><li style="flex:1">E</li><li style="flex:1">−E </li></ul><p>i</p><p>k<br>FTb</p><p>p<sub style="top: 0.1363em;">0 </sub>= n<sub style="top: 0.1363em;">i</sub>e </p><p>Thus, we can deduce that the following must be true: </p><p>EE<br>−E </p><ul style="display: flex;"><li style="flex:1">F</li><li style="flex:1">i</li></ul><p></p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">T</li></ul><p>b</p><p>n = n<sub style="top: 0.1363em;">0 </sub>+ ∆n = n<sub style="top: 0.1363em;">i</sub>e </p><p>−E i</p><p>k<br>FTb</p><p>p = p<sub style="top: 0.1363em;">0 </sub>+ ∆p = n<sub style="top: 0.1363em;">i</sub>e </p><p>So what do we do? It turns out that it is very simple to handle behavior under non-equilibrium conditions. We just redefine Fermi levels into quasi-Fermi levels. Now, we split our concept of a single Fermi level into two. </p><p>E<sub style="top: 0.1407em;">F,n </sub>is the Quasi-Fermi level for electrons. E<sub style="top: 0.1407em;">F,p </sub>is the Quasi-Fermi level for holes. </p><p>E<br>−E <br>F,n </p><p>ki<br>Tb</p><p>n = n<sub style="top: 0.1363em;">0 </sub>+ ∆n = n<sub style="top: 0.1363em;">i</sub>e </p><p></p><ul style="display: flex;"><li style="flex:1">E</li><li style="flex:1">−E </li></ul><p>F,p </p><p>bi</p><ul style="display: flex;"><li style="flex:1">k</li><li style="flex:1">T</li></ul><p></p><p>p = p<sub style="top: 0.1363em;">0 </sub>+ ∆p = n<sub style="top: 0.1363em;">i</sub>e </p><p>Quasi Fermi levels can change dramatically for minority carriers when excess carriers are generated. Since an n-type semiconductor has a much larger concentration of electrons than holes, it is easy to exceed the equilibrium hole concentration by creating excess carriers. The same is true for electrons </p><p>8</p><p>ECE 531 Semiconductor Devices </p><p>Dr. Andre Zeumault </p><p>Lecture Notes – 06 </p><p>Figure 5: (a) Fermi level at equilbrium. (b) Quasi-Fermi levels with additional 1 × 10<sup style="top: -0.3299em;">13 </sup>of excess carriers. </p><p>in a p-type semiconductor. This is illustrated in Figure 5. In this case the number of excess holes dramatically changes the quasi-Fermi level for holes but only slightly modifies the quasi-Fermi level for electrons. </p><p>9</p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages9 Page
-
File Size-