INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

INTRODUCTORY LECTURE on ROTATIONAL SPECTROSCOPY

INTRODUCTORYINTRODUCTORY LECTURELECTURE onon ROTATIONALROTATIONAL SPECTROSCOPYSPECTROSCOPY CristinaCristina PuzzariniPuzzarini Dip.Dip. ChimicaChimica ““GiacomoGiacomo CiamicianCiamician”” UniversitUniversitàà didi BolognaBologna CODECSCODECS SummerSummer SchoolSchool 20132013 THEORETICALTHEORETICAL SPECTROSCOPYSPECTROSCOPY EE Eel Evib Erot ELECTRONICELECTRONIC VIBRATIONALVIBRATIONAL ROTATIONALROTATIONAL FREQUENCYFREQUENCY REGIONREGION mm/submm waves Rotational Spectroscopy Electronics Photonics “Building”“Building” thethe ROTATIONALROTATIONAL SPECTRUMSPECTRUM intensity (a.u.) 0 20 40 60 80 100 frequency (cm-1) (1)(1) RotationalRotational energyenergy levelslevels (2)(2) SelectionSelection rules:rules: transitionstransitions allowedallowed (3)(3) IntensityIntensity (transitions)(transitions) CoordinateCoordinate SSyystemstemss Molecule-fixed coordinate system Lab-fixed coordinate system ROTATINGROTATING RIGIDRIGID BODYBODY (CLASSIC(CLASSIC VIEW)VIEW) 1 T ωTIω 2 == angolarangolar velocityvelocity II == inertiainertia tensortensor AngolarAngolar VelocitVelocityy vi r i x ω y RIGIDRIGID BODY:BODY: v ωr i i z InertiaInertia TensorTensor I xx I xy I xz n n 2 2 2 2 I xx mi ri xi mi yi zi i1 i1 I I yx I yy I yz n I xy mi xi yi i1 I zx I zy I zz ByBy cconvenonventiontion:: IIc IIb IIa INERTIAINERTIA TENSORTENSOR II Principal Principal I xx I xy I xz I x 0 0 inertiainertia I I yx I yy I yz systemsystem I 0 I y 0 I zx I zy I zz 0 0 I z AngularAngular MomentMoment RIGID BODY J e defined in the rotating coordinate system (CM system) KINETICKINETIC ENERGYENERGY ofof aa ROTANTINGROTANTING RIGIDRIGID BODYBODY (CLASSIC(CLASSIC VIEW)VIEW) 1 1 J 2 T ωTIω 2 2 I == angularangular velocyvelocy II == inertiainertia tensortensor KINETICKINETIC ENERGYENERGY ofof aa ROTANTINGROTANTING RIGIDRIGID BODYBODY 1 1 J 2 T ωTIω 2 2 I 1 J 2 J 2 J 2 E T x y z rot rot 2 I x I y I z •• PotentialPotential energy?energy? •• FromFrom classicclassic mechanicsmechanics toto quantumquantum mechanicsmechanics ClassicClassic view:view: conservationconservation ofof angularangular momentummomentum QuantumQuantum mechanics:mechanics: commutationcommutation ofof operatorsoperators 2 2 2 2 2 2 2 J J x J y J z J X J Y J Z x,y,z molecule-fixed coordinate system X,Y,Z space-fixed coordinate system ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 J J x J y J z J X JY J Z TheThe spacespace-- andand moleculemolecule--fixedfixed componentscomponents ofof ĴĴ commute!commute! SS == matrixmatrix thatthat relatesrelates thethe coordinatescoordinates ofof thethe atomsatoms inin thethe moleculemolecule--fixedfixed systemsystem toto thosethose inin thethe spacespace--fixedfixed systemssystems Ĵ=SF ĴF where =x,y,z and F=X,Y,Z ĴF= F Ĵ Then: [ĴF,Ĵ] = ĴFSF’ĴF’ –SF’ĴF’ĴF = [ĴF,SF’]ĴF’ + SF’(ĴFĴF’ – ĴF’ĴF) = ieFF’F”(SF”ĴF’ + SF’ĴF”) = 0 !! where eFF’F”=permutation symbol [ĴX,SX] = 0 [ĴX,SY] = iSZ [ĴX,SZ] = –iSY [ĴX,ĴY] = –ieXYZĴZ 22 EIGENVALUESEIGENVALUES ofof ĴĴ ,, ĴĴZZ,, ĴĴzz ˆ 2 ˆ 2 ˆ 2 ˆ 2 Jˆ 2 , Jˆ 2 0 J , J z 0 J , J Z 0 z Z ˆ 2 2 J ,K ,M J J ,K ,M J (J 1) J=0,1,2,3, … ˆ 2 2 2 M=J,J-1 … -J J ,K ,M J Z J ,K ,M M ˆ 2 2 2 J ,K ,M J z J ,K ,M K K=J,J-1 … -J ROTATIONALROTATIONAL HAMILTONIANHAMILTONIAN 1 Jˆ 2 Jˆ 2 Jˆ 2 Hˆ x y z rot 2 I I I x y z ˆ H rotrot Erot rot ROTATIONALROTATIONAL ENERGYENERGY LEVELSLEVELS ClassificationClassification Examples CO CO2 CH4 SF6 NH3 H2O ByBy cconvenonventiontion:: IIc IIb IIa Let’s consider the simplest case m1 m2 R DIATOMIC/LINEARDIATOMIC/LINEAR MOLECULE:MOLECULE: RIGIDRIGID ROTORROTOR (approx)(approx) R z m1 CM m2 r1 r2 2 I = 0 I = I = I z x y I miri i m m 2 1 2 where I R m1 m2 reduced mass rr1212 rr2323 1 2 3 1 2 2 2 I m1m2r12 m2m3r23 m1m3 r12 r23 M Iz = 0 Ix = Iy = I ROTATIONALROTATIONAL ENERGYENERGY LEVELS:LEVELS: DiatomicDiatomic andand LinearLinear moleculesmolecules ˆ 1 ˆ 2 1 ˆ 2 1 ˆ 2 H rot J x J y J 2I x 2I y 2I Iz = 0 Ix = Iy = I makingmaking useuse ofof thethe eigenvalueseigenvalues ofof ĴĴ2 2 BB == rotationalrotational constantconstant Erot J (J 1) BJ (J 1) 2I JJ == 0,1,2,3,….0,1,2,3,…. ROTATIONALROTATIONAL ENERGYENERGY LEVELS:LEVELS: DiatomicDiatomic andand LinearLinear moleculesmolecules E =12B J=3 rot Erot BJ (J 1) E =6B J=2 rot E =2B J=1 rot E =0 J=0 rot ROTATIONALROTATIONAL ENERGYENERGY LEVELS:LEVELS: DiatomicDiatomic andand LinearLinear moleculesmolecules E =12B J=3 rot E(J 1 J ) 2B(J 1) E =6B J=2 rot E =2B J=1 rot E =0 J=0 rot ROTATIONALROTATIONAL ENERGYENERGY LEVELSLEVELS ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 ˆ 2 J J x J y J z J X JY J Z x,y,z molecule-fixed coordinate system X,Y,Z space-fixed coordinate system ˆ 2 ˆ 2 ˆ 2 ˆ 2 J , J z 0 J , J Z 0 ˆ 2 2 J ,K ,M J J ,K ,M J (J 1) ˆ 2 2 2 J ,K ,M J Z J ,K ,M M M=J,J-1 … -J RotationalRotational energyenergy levels:levels: (2(2JJ+1)+1) foldfold degeneratedegenerate inin MM “Building”“Building” thethe ROTATIONALROTATIONAL SPECTRUMSPECTRUM intensity (a.u.) 0 20 40 60 80 100 frequency (cm-1) (1)(1) RotationalRotational energyenergy levelslevels (2)(2) SelectionSelection rules:rules: transitionstransitions allowedallowed (3)(3) IntensityIntensity (transitions)(transitions) SELECTIONSELECTION RULESRULES TransitionTransition moment:moment: 00 Approx BO: tot=rotvibele ele vib rot rot vib eled d d f f f i i i rot vib ele dipole moment in the space-fixed coordinate system X Xy Xx Xz Z=direction cosines F cosF F where =x,y,z (molecule-fixed) F F=X,Y,Z (space-fixed) F SELECTIONSELECTION RULESRULES where =x,y,z F F=X,Y,Z F F=direction cosines rot rot d ele vib vib eled d f F i rot f f i i vib ele F (1)(1) (2)(2) molecular dipole moment components (1)(1) SelectionSelection rulesrules (2)(2) NonNon--vanishingvanishing permanentpermanent dipoledipole momentmoment SELECTIONSELECTION RULESRULES “Rotational” transition moment Rij: Rij f F i where: F JKM F J' K' M' J F J' JK F J' K' JM F J' M' (1)(1) (2)(2) (3)(3) The direction-cosine matrix elements are known: (1)(1) JJ == 11 (2)(2) KK == 00 (3)(3) MM == 0,0, 11 “Building”“Building” thethe ROTATIONALROTATIONAL SPECTRUMSPECTRUM intensity (a.u.) 0 20 40 60 80 100 frequency (cm-1) (1)(1) RotationalRotational energyenergy levelslevels (2)(2) SelectionSelection rules:rules: transitionstransitions allowedallowed (3)(3) IntensityIntensity (transitions)(transitions) RotationalRotational energyenergy levelslevels ++ SelectionSelection rulesrules RotationalRotational transitiontransition frequenciesfrequencies (rotational(rotational spectrum:spectrum: xx axis)axis) E =12B J=3 rot Erot BJ (J 1) E =6B ++ J=2 rot J 1 E =2B J=1 rot E =0 J=0 rot E(J 1 J ) 2B(J 1) (B in energy units) h rot 2B(J 1) ??? ??? JJ=1=1--00 JJ=2=2--11 JJ=3=3--22 JJ=4=4--33 JJ=5=5--44 y y t t i i s s en en t t n n I I 2B/h 2B/h 2B/h 2B/h 2B/h 2B/h 4B/h 6B/h 8B/h frequency LINELINE STRENGTHSSTRENGTHS (1)(1) BoltzmannBoltzmann distributiondistribution E N g rot J J e kT N0 g0 (2)(2) degeneracydegeneracy 2J+1 E N rot J (2J 1)e kT N0 g /g =2J+1 f 0 exp(-E /kT) rot N /N =(2J+1)exp(-E /kT) f 0 rot J max 0 / N f N J E N rot J (2J 1)e kT N0 IntensityIntensity ofof RotationalRotational TransitionsTransitions 1 2 I N 2 n μm T i mn NJ/N0 Iabs 012345678910 J Intensity Population “Building”“Building” thethe ROTATIONALROTATIONAL SPECTRUMSPECTRUM intensity (a.u.) 0 20 40 60 80 100 frequency (cm-1) (1)(1) RotationalRotational energyenergy levelslevels (2)(2) SelectionSelection rules:rules: transitionstransitions allowedallowed (3)(3) IntensityIntensity (transitions)(transitions) 0Intens 20ity (u.a.) 40 60 80 100 Rotational spectrum ofCO wavenumbers ( cm -1 ) LinearLinear Rotor:Rotor: EIGENFUNCTIONSEIGENFUNCTIONS M |M | iM , YJ , PJ cos e SPHERICALSPHERICAL HARMONICSHARMONICS ^ Eigenvalues of J2: ħ2J(J+1) with J = 0, 1, 2, … ^ Eigenvalues of Jz : ħM with -J ≤ M ≤ J SPHERICALSPHERICAL HARMONICSHARMONICS J M VectorVector RappresentaRappresentationtion ofof AngularAngular MomentumMomentum JJ == 22 55 valuesvalues forfor MM Costant length (J) - 5 orientations (M) OneOne stepstep furtherfurther …..….. MoleculesMolecules areare NOTNOT rigid:rigid: centrifugalcentrifugal distortiondistortion SEMISEMI--RIGIDRIGID ROTORROTOR withwith CENTRIFUGALCENTRIFUGAL DISTORTIONDISTORTION perturbation theory ˆ ˆ 0 ˆ ' H rot H rot H dist rigidrigid--rotorrotor ˆ ' DJ ˆ 4 H dist 4 J 3 4B e >> 00 !!!! DJ 2 ' 2 2 Edist DJ J (J 1) 2 2 Erot / h BJ (J 1) DJ J (J 1) E =12hB J=3 rot/h J=3 centrifugalcentrifugal distortiondistortion E =6hB J=2 rot J=2 Erot=2hB J=1 J=1 E =0 J=0 rot J=0 3 rot 2B(J 1) 4DJ (J 1) [B, DJ in frequency units] y t i s JJ=1=1--00 JJ=2=2--11 JJ=3=3--22 JJ=4=4--33 JJ=5=5--44 en t n I 2B 2B 2B 2B 2B 2B 4B 6B 8B frequency AnotherAnother stepstep furtherfurther …..….. OtherOther typestypes ofof rotorrotor ClassificationClassification Examples CO CO2 CH4 SF6 NH3 H2O ByBy cconvenonventiontion:: IIc IIb IIa thusthus CC BB AA SPHERICALSPHERICAL TOPSTOPS CH4, SF6 , … Ia = Ib = Ic = I Erot = B J(J+1) Each level: (2J + 1)2 fold degenerate (K,M) = 0 !!! SYMMETRICSYMMETRIC TOPSTOPS I x I y I I z I // (z = symmetry axis) 1 Jˆ 2 1 1 ˆ ˆ 2 H rot J z 2 I I // I SYMMETRICSYMMETRIC TOPSTOPS 2 J (J 1) 1 1 2 Erot K 2 I I // I K=J,J-1 … -J SYMMETRICSYMMETRIC TOPSTOPS 2 J (J 1) 1 1 2 Erot K 2 I I // I CH F 3 prolateprolate oblateoblate II >> II BCl3 II << II II// == IIa II// == IIc >0 2 Prolate:Prolate: EErot == BJBJ((JJ+1)+(+1)+(AA––BB))KK wherewhere AA>>B=CB=C 2 Oblate:Oblate: EErot == BJBJ((JJ+1)+(+1)+(CC––BB))KK

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    266 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us