http://lib.uliege.ac.be http://matheo.uliege.be Master thesis : From mission analysis to systems engineering of the OUFTI-Next nanosatellite Auteur : Dandumont, Colin Promoteur(s) : Kerschen, Gaetan Faculté : Faculté des Sciences appliquées Diplôme : Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering" Année académique : 2017-2018 URI/URL : http://hdl.handle.net/2268.2/4538 Avertissement à l'attention des usagers : Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger, copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite. Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit. University of Liège - Faculty of Applied Sciences ATFE0005-1 From mission analysis to systems engineering of the OUFTI-Next nanosatellite Author Dandumont Colin (20112143) Academic Advisor Prof. Kerschen Gaëtan Graduation Studies conducted for obtaining the Master’s degree in Aerospace Engineering by Colin Dandumont Academic year 2017-2018 Abstract OUFTI-Next is the new CubeSat project of the University of Liège. This mission was imagined after the success of OUFTI-1. The goal of this nanosatellite is to detect hydric stress of agricultural fields around the world. It is equipped with a Mid-Wavelength InfraRed (MWIR) detector. It will be a world premiere with such a small satellite (3U or 30 cm × 10 cm × 10 cm). From the data, the temperature of the crop will be extracted and the irrigation status assessed. This satellite is a technology demonstrator for an ambitious project. The final goal is indeed to create a smart irrigation program with a daily revisit over a location. It will provide tools for farmers to improve the irrigation, increase the yield of their fields and spare less drinkable water. With only one satellite, it is unfortunately impossible. OUFTI-Next’s mission is no less important because it will demonstrate that the integration of a MWIR detector is feasible. This master thesis is the continuity of a feasibility study done last year (2016-2017). From the requirements, primordial aspects of the satellite are developed. Orbits, commu- nication, power budget, attitude strategy, ... are typical topics introduced in this work. It offers an overview of the satellite and a link between different subjects addressed in other master theses (the detector’s cooling system, the optical design and the thermal aspect). At the end, some configurations, thought as simple as possible, are introduced and discussed. All subsystems are reviewed with the will to find an optimal configuration. Of course, concessions are done and assumptions made. At this stage of the development, it is natural that some information is missing. i Acknowledgements First of all, I would like to thank Xavier Werner. His advice and answers really helped me during all this project. He was always present and guided my work in the right direction. I also wish to thank my promoter Gaëtan Kerschen as well as Prof. Serge Habraken and Jerôme Loicq for their encouragement and advice during the different meetings. Without them, working on this fabulous academic project would never have been possible. I sincerely thank them. I discovered many aspects of CubeSats and learn a lot about them. Other students of this project, Anna, Lidiia, Anthony, Donatien, Pierre and Victor are also warmly thanked. It is a great team project. OUFTI-Next can only exist because we have all worked in order to provide the best of ourselves. We can only hope to see in a few years the launch of this small satellite. For helping me to realize this work, I’m thankful to SpaceBel and specially Joachim Gémis. He helped me to apprehend VTS, a wonderful visualization tool developed in collaboration with CNES. It allowed me to discover all their software. Although I have never met in person my interlocutors at CNES, without them, this work would probably not have been possible. They always answered in short delays to my questions and in detail. Finally, thanks to Elise, Alex, Juan and Thibault. They endured me during all lunchtimes and never complained to hear me speak constantly about this nanosatellite. ii Contents Abstract i Acknowledgements ii Acronyms v Introduction 1 1 Mission 3 1.1 Objectives . .3 1.1.1 Water stress . .3 1.1.2 Thermal infrared . .4 1.1.3 Region of interest . .6 1.2 Global mission requirements . .9 1.3 Demonstrator requirements . .9 2 Nominal scenarios 11 2.1 Orbits . 11 2.1.1 Crossing times . 12 2.1.2 Recurrence with no tilting . 20 2.1.3 Recurrence with tilting . 23 2.1.4 Orbit perturbations . 28 2.1.5 Eclipse duration . 31 2.1.6 Lifetime . 32 2.1.7 Conclusion . 35 2.2 Communication strategy . 36 2.2.1 Frequency bands and data rate . 36 2.2.2 Data budget . 37 2.3 Acquisition strategy . 40 2.3.1 Acquisition possibilities . 40 2.3.2 MWIR detector . 42 2.3.3 Visible detector . 43 2.4 Attitude strategy . 43 2.4.1 Global Navigation Satellite System (GNSS) . 43 2.4.2 Accuracy . 44 2.5 Power consumption . 45 2.5.1 Full illumination . 46 iii Contents 2.5.2 Eclipses . 48 2.5.3 Mean consumption . 49 3 Cubesat configurations comparison 51 3.1 Payload . 53 3.2 Platform . 56 3.2.1 ADCS . 56 3.2.2 COM . 60 3.2.3 OBC . 64 3.2.4 PWR . 64 3.2.5 STR . 65 3.3 Power budget . 66 3.3.1 Power generation . 66 3.3.2 Power margin . 70 3.3.3 Battery capacity . 72 3.4 Thermal budget . 74 3.4.1 Full passive solution . 75 3.4.2 Mixed solution . 77 3.4.3 Full active solution . 77 3.5 Mass budget . 78 3.6 6U structure . 80 4 Optimal configuration & scenario 82 4.1 Configuration . 82 4.1.1 Payload orientation . 82 4.1.2 Power & cooling system . 82 4.1.3 Radiator & cooling system . 83 4.1.4 Conclusion . 83 4.2 Scenario . 84 4.2.1 Orbit & acquisition . 84 4.2.2 Communication . 85 Conclusion 86 A Software 88 A.1 Celestlab . 88 A.2 IDM-CIC . 88 A.3 Ixion . 88 A.4 Simu-CIC . 89 A.5 STELA . 89 A.6 VTS . 89 B Orbit 90 C Power Budget 93 Bibliography 96 CONTENTS iv Acronyms ADCS Attitude Determination and Control System. AOCS Attitude and Orbit Control System. BCN Beacon. BOL Beginning Of Life. CMOS Complementary Metal Oxide Semiconductor. CNES Centre National d’Etudes Spatiales. COM Communication. COP Coefficient Of Performance. COTS Commercial Off-The-Shelf. DOD Depth Of Discharge. ECEF Earth-Centered, Earth-Fixed. EFL Effective Focal Length. EPS Electrical Power System. ESA European Space Agency. FAO Food and Agriculture Organization of the United Nations. FOV Field Of View. GEO Geostationary Earth Orbit. GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema (Global Navigation Satel- lite System). GNSS Global Navigation Satellite System. GPS Global Positioning System. v Acronyms GSD Ground Sampling Distance. GTO Geostationary Transfert Orbit. iFOV Instantaneous Field Of View. ISIS Innovative Solutions In Space. ISS International Space Station. JAXA Japan Aerospace Exploration Agency. JEMRMS Japanese Experiment Module Remote Manipulator System. LAT Local Apparent Solar Time. LEO Low Earth Orbit. LMT Local Mean Time. LWIR Long-WaveLength InfraRed. MWIR Mid-Wavelength InfraRed. NAVSTAR GPS NAVigation System with Time and Ranging Global Positioning Sys- tem. NRCSD NanoRacks CubeSat Deployer. OBC On-Board Computer. OUFTI-1 Orbital Utility For Telecommunication Innovation. OUFTI-Next Orbital Utility For Thermal Imaging Next. PCB Printed Circuit Board. RAAN Right Ascension of the Ascending Node. S/C Spacecraft. SNR Signal to Noise Ratio. SRP Solar Radiation Pressure. SSO Sun-Synchronous Orbit. STELA Semi-analytic Tool for End of Life Analysis. TDI Time Delay Integration. Acronyms vi Acronyms UAV Unmanned Aerial Vehicle. VIS Visible. VTS Visualisation Tool for Space data. Acronyms vii Introduction OUFTI-Next is the new CubeSat project of the University of Liège and the Liège Space Center. It will be the third nanosatellite of this academic institution. OUFTI-1 was a 1U CubeSat (10 cm × 10 cm × 10 cm) and was launched in 2016 as part of the ESA’s Fly Your Satellite! (FYS) program. It was dedicated to telecommunication and the use of the D-star communication protocol. Unfortunately, the contact with the satellite was lost 12 days after the launch. OUFTI-2 is its little brother and will be launched in the near future. The payload is again the D-star module since it was not possible to test it on OUFTI-1. Two other scientific payloads are also present. The first one is related to radiation shielding and the second one to attitude control measurement. For the third satellite, the goal is totally different. OUFTI-Next stands for Orbital Utility For Thermal Imaging Next.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages108 Page
-
File Size-