Superstrings ETH Proseminar in Theoretical Physics

Superstrings ETH Proseminar in Theoretical Physics

Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Superstrings ETH Proseminar in Theoretical Physics ImRe Majer May 13th, 2013 ImRe Majer | Superstrings 1/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Outline 1 Neveu{Schwarz{Ramond formulation Building up the spectrum GSO projection 2 Modular invariance Spin structures Partition function 3 Green{Schwarz formulation Supersymmetry Building up the spectrum ImRe Majer | Superstrings 2/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Outline 1 Neveu{Schwarz{Ramond formulation Building up the spectrum GSO projection 2 Modular invariance Spin structures Partition function 3 Green{Schwarz formulation Supersymmetry Building up the spectrum ImRe Majer | Superstrings 3/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation NSR action Light cone gauge fixing The Neveu{Schwarz{Ramond action in light cone gauge 1 Z S l:c: = − d 2σ @ X i @αX i − i ¯i ρα@ i NSR 2π α α transverse coordinates i = 1;:::; 8 i is a worldsheet Majorana 2-spinor i is a spacetime vector i SO(8) rotational symmetry =) is an 8v representation of SO(8) ImRe Majer | Superstrings 4/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Building up the spectrum Tools for generating the spectrum Open string or the right-moving part of a closed string. Creation and annihilation operators: i i i X : α−n and αn n 2 Z i i i d−m and dm m 2 Z for R-sector : i i 1 b−r and br r 2 Z + 2 for NS-sector The mass2 operator: X X 1 α0m2 = αi αi + md i d i − for NS-sector −n n −m m 2 n>0 m>0 | {z } | {z } N(α) N(d) 0 2 X i i X i i α m = α−nαn + rb−r br for R-sector n>0 r>0 | {z } | {z } N(α) N(b) ImRe Majer | Superstrings 5/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Building up the spectrum Ground states NSR formulation: All creation/annihilation operators are spacetime vectors. Bosons −! bosons Fermions −! fermions Ground state determines the type of spectrum (bosonic or fermionic) built on it NS-sector (spacetime bosons) Scalar ground state (bosonic): j0i 0 2 1 Tachyonic: α m = − 2 R-sector (spacetime fermions) µ ν µν fd0 ; d0 g = η =) spinor of SO(1,9) Spinor ground state (fermionic): jci χc (k) χc (k) is a spinor, k is the momentum Massless: α0m2 = 0 D = 10 =) 2D=2 = 32 complex components: c = 1;:::; 32 ImRe Majer | Superstrings 6/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Constraints on the R ground state Impose two constraints simultaneously on the R ground state! 1 Majorana constraint 2 Weyl constraint Also, ground state spinor satisfies the Dirac equation. 3 Dirac equation Each condition will reduce the degrees of freedom from the original 64 (32 complex) by a factor of two: Majorana Weyl Dirac equation 32 complex −−−−−! 32 real −−−! 16 real −−−−−−−−! 8 real Crucial for spacetime supersymmetry! ImRe Majer | Superstrings 7/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Constraints on the R ground state Majorana constraint 1 Majorana constraint: reality condition on the spinor field The massless Dirac equation: µ i Γ @µχ = 0 Γµ { 10 generally complex 32 dimensional Dirac matrices. If all Dirac matrices are real or imaginary (\Majorana representation"), then possible to impose reality on χ. (\Majorana spinor") This is possible in D = 2; 3; 4 (mod 8). Construct imaginary Dirac matrices just for D = 10! ImRe Majer | Superstrings 8/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation SO(8) Clifford algebra a ¯a Spinor representation of SO(8): λ = (λs ; λc ) a = 1;:::; 8 spinor index Reducible 8 ⊕ 8 representation s c ¯a = 1;:::; 8 conjugate spinor index The SO(8) transformations can be constructed with the help of the Dirac matrices, which obey the Clifford algebra. fγi ; γj g = 2δij 0 γi γi = a¯a i; j = 1;:::; 8 vector index γi 0 ¯aa 16×16 i Real, symmetric γa¯a matrices constructed from the Pauli matrices: 1 2 1 γa¯a = iσ2 ⊗ iσ2 ⊗ iσ2 γa¯a = ⊗ σ1 ⊗ iσ2 3 1 4 1 γa¯a = ⊗ σ3 ⊗ iσ2 γa¯a = σ1 ⊗ iσ2 ⊗ 5 1 6 1 γa¯a = σ3 ⊗ iσ2 ⊗ γa¯a = iσ2 ⊗ ⊗ σ1 7 1 8 1 1 1 γa¯a = iσ2 ⊗ ⊗ σ3 γa¯a = ⊗ ⊗ ImRe Majer | Superstrings 9/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation SO(1,9) Clifford algebra The (25 = 32)-dimensional Dirac matrices of the SO(1,9) spinor representation obey the Clifford algebra as well: fΓµ; Γν g = −2ηµν µ, ν = 0;:::; 9 SO(8) is the transverse subgroup of SO(1,9). Use γi matrices to build the Γµ matrices 0 Γ = σ2 ⊗ 116 i i Γ = iσ1 ⊗ γ i = 1;:::; 8 9 Γ = iσ3 ⊗ 116 γi are all real =) Γµ are all imaginary The Majorana representation is possible! χ: 32 complex −! 32 real components ImRe Majer | Superstrings 10/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Constraints on the R ground state Weyl constraint 2 Weyl constraint: the spinor field has definite chirality 0 1 9 Define chirality operator: Γ11 = Γ Γ ··· Γ Anticommutes with all the other Dirac matrices and squares to identity: µ 2 fΓ11; Γ g = 0 (Γ11) = 1 Spinor of definite chirality (\Weyl spinor"): Γ11χ = ±χ By demanding positive or negative chirality, again eliminate half of the degrees of freedom χ : 16s ⊕ 16c −! λ : 8s ⊕ 8c 32 real −! 16 real components Note: Majorana and Weyl constraints are only compatible in D = 2 (mod 8) dimensions. ImRe Majer | Superstrings 11/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Constraints on the R ground state Dirac equation 3 Dirac equation (massless): µ i Γ @µχ = 0 For Weyl spinors λ = (λs ; λc ), this reduces to a i ¯a (@0 ± @9) λs + γa¯a@i λc = 0 a = 1;:::; 8 ¯a i a (@0 ∓ @9) λc + γ¯aa@i λs = 0 ¯a = 1;:::; 8 for chirality Γ11χ = ±χ The spinor and the conjugate spinor representations are not independent for a definite chirality! λ : 8s ⊕ 8c −! λs : 8s or λc : 8c 16 real −! 8 real components + chirality ! Choose 8s form 8s ⊕ 8c multiplet − chirality ! Choose 8c ImRe Majer | Superstrings 12/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Open string spectrum Without GSO projection states and their SO(8) representation representation contents with respect α0m2 little group contents to the little group NS-sector (bosons) j0i − 1 SO(9) 1 2 1 bi j0i 0 -1/2 SO(8) 8v 8v j αi j0i bi b j0i + 1 -1 -1/2 -1/2 SO(9) 36 2 8v 28 i j k b-1/2 b-1/2 b-1/2 j0i 56v +1 SO(9) 84 ⊕ 44 i j bi j0i α-1 b-1/2 j0i -3/2 1 ⊕ 28 ⊕ 35v 8v R-sector (fermions) jai 8s 8s 0 SO(8) j¯ai 8c 8c αi jai di j¯ai -1 -1 128 8c ⊕ 56c 8s ⊕ 56s +1 SO(9) αi j¯ai di jai -1 -1 128 8s ⊕ 56s 8c ⊕ 56c i; j; k = 1 :::; 8 a; ¯a = 1;:::; 8 ImRe Majer | Superstrings 13/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation GSO projection Why are we not satisfied? Several properties of the NSR model so far which are not so tempting: Tachyon Anticommuting operators map bosons to bosons No spacetime supersymmetry: #bosons 6= #fermions on the same mass levels Conflict with modular invariance Gliozzi, Scherk and Olive (GSO): truncate the spectrum Will seem arbitrary at first, but the GSO projection is required by modular invariance. ImRe Majer | Superstrings 14/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation GSO projection Truncation of the NS-sector Let j'0i be a bosonic state. j'i = bi1 bi2 ··· bin j' i −r1 −r2 −rn 0 i b−ri are spacetime vectors =) for 8n; j'i is bosonic. n is even: product of the anticommuting operators is commuting commuting operator: bosons −! bosons n is odd: product of the anticommuting operators is anticommuting anticommuting operator: bosons −! bosons GSO projection: discard those with n odd. Still have a choice in j'0i states of reference. Appealing requirements: Get rid of the tachyon! #bosons = #fermions on the same mass levels! Formally: F P1 i i Define quantum number: G = − (−1) where F = r=1=2 b−r br Demand: G j'i = + j'i ImRe Majer | Superstrings 15/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation GSO projection Truncation of the R-sector NS-sector truncation: all mass levels exist in both the fermionic and the bosonic sector, but still #bosons 6= #fermions on the same mass levels. GSO projection: eliminate half of the R-sector! Formally: Generalize the chirality operator Γ11 for massive levels: 1 ¯ F X i i Γ = Γ11 (−1) again F = d−mdm m=1 Demand: Γ¯ jχi = ± jχi ¯ µ f Γ ; dn g = 0 =) Projection depends on the ground state. For the ground state Γ¯ = Γ11 =) Only keep the states built onto the + or − chirality massless Weyl spinors. Note: This does not mean that the massive states are Weyl spinors. Massive spinors cannot be Weyl! ImRe Majer | Superstrings 16/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Open string spectrum With GSO projection states and their SO(8) representation G (NS) representation contents with respect α0m2 little group contents Γ¯ (R) to the little group NS-sector (bosons) j0i − 1 −1 SO(9) 1 2 1 bi j0i 0 -1/2 +1 SO(8) 8v 8v j αi j0i bi b j0i + 1 -1 -1/2 -1/2 −1 SO(9) 36 2 8v 28 i j k b-1/2 b-1/2 b-1/2 j0i 56v +1 +1 SO(9) 84 ⊕ 44 i j bi j0i α-1 b-1/2 j0i -3/2 1 ⊕ 28 ⊕ 35v 8v R-sector (fermions) jai +1 8s 8s 0 SO(8) j¯ai −1 8c 8c αi jai di j¯ai -1 -1 +1 128 8c ⊕ 56c 8s ⊕ 56s +1 SO(9) αi j¯ai di jai -1 -1 −1 128 8s ⊕ 56s 8c ⊕ 56c i; j; k = 1 :::; 8 a; ¯a = 1;:::; 8 ImRe Majer | Superstrings 17/42 Neveu{Schwarz{Ramond formulation Modular invariance Green{Schwarz formulation Open string spectrum With GSO projection states and

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us