Lecture Notes

Lecture Notes

i Applications of Group Theory to the Physics of Solids M. S. Dresselhaus 8.510J 6.734J SPRING 2002 ii Contents 1 Basic Mathematical Background 1 1.1 De¯nition of a Group . 1 1.2 Simple Example of a Group . 2 1.3 Basic De¯nitions . 4 1.4 Rearrangement Theorem . 6 1.5 Cosets . 6 1.6 Conjugation and Class . 8 1.6.1 Self-Conjugate Subgroups . 9 1.7 Factor Groups . 10 1.8 Selected Problems . 11 2 Representation Theory 15 2.1 Important De¯nitions . 15 2.2 Matrices . 17 2.3 Irreducible Representations . 18 2.4 The Unitarity of Representations . 20 2.5 Schur's Lemma (Part I) . 23 2.6 Schur's Lemma (Part 2) . 24 2.7 Wonderful Orthogonality Theorem . 27 2.8 Representations and Vector Spaces . 30 2.9 Suggested Problems . 31 3 Character of a Representation 33 3.1 De¯nition of Character . 33 3.2 Characters and Class . 34 3.3 Wonderful Orthogonality Theorem for Character . 36 3.4 Reducible Representations . 38 iii iv CONTENTS 3.5 The Number of Irreducible Representations . 40 3.6 Second Orthogonality Relation for Characters . 41 3.7 Regular Representation . 43 3.8 Setting up Character Tables . 47 3.9 Symmetry Notation . 51 3.10 Selected Problems . 73 4 Basis Functions 75 4.1 Symmetry Operations and Basis Functions . 75 4.2 Basis Functions for Irreducible Representations . 77 ^(¡n) 4.3 Projection Operators Pkl . 82 ^(¡n) 4.4 Derivation of Pk` . 83 4.5 Projection Operations on an Arbitrary Function . 84 4.6 Linear Combinations for 3 Equivalent Atoms . 86 4.7 Selected Problems . 92 5 Group Theory and Quantum Mechanics 95 5.1 Overview . 95 5.2 The Group of SchrÄodinger's Equation . 96 5.3 The Application of Group Theory . 98 5.4 Selected Problems . 100 6 Application to Crystal Field Splitting 103 6.1 Introduction . 103 6.2 Comments on the Form of Crystal Fields . 106 6.3 Characters for the Full Rotation Group . 109 6.4 Example of a Cubic Crystal Field Environment . 113 6.5 Comments on Basis Functions . 119 6.6 Characters for Other Symmetry Operators . 124 6.7 Selected Problems . 126 7 Application to Selection Rules 129 7.1 Summary of Important Results for Basis Functions . 131 7.2 Direct Product of Two Groups . 133 7.3 Direct Product of Two Irreducible Representations . 134 7.4 Characters for the Direct Product of Groups and Repre- sentations . 135 CONTENTS v 7.5 The Selection Rule Concept in Group Theoretical Terms 138 7.6 Selection Rules for Electric Dipole Transitions . 140 7.7 Selected Problems . 144 8 Electronic States of Molecules 147 8.1 Introduction . 147 8.2 General Concept of Equivalence . 151 8.3 Directed Valence Bonding . 153 8.4 Diatomic Molecules . 154 8.4.1 Homonuclear Diatomic Molecules in General . 154 8.4.2 The Hydrogen Molecule H2 . 156 8.4.3 The Helium Molecule He2 . 157 8.4.4 Heterogeneous Diatomic Molecules . 157 8.5 Electronic Orbitals for Multi-atomic Molecules . 162 8.5.1 The NH3 Molecule . 162 8.5.2 The CH4 Molecule . 163 8.5.3 The Hypothetical SH6 Molecule . 171 8.5.4 The SF6 Molecule . 175 8.5.5 The B12H12 Molecule . 178 8.6 Bond Strengths . 181 8.7 σ- and ¼-bonds . 184 8.8 Selected Problems . 192 9 Molecular Vibrations 195 9.1 Molecular Vibrations { Background . 195 9.2 Application of Group Theory to Molecular Vibrations . 197 9.3 Molecular Vibrations in H2O . 200 9.4 Overtones and Combination Modes . 203 9.5 Infrared Activity . 203 9.6 Vibrations for Linear Molecules . 206 9.6.1 The CO Molecule . 206 9.6.2 The O2 Molecule . 208 9.6.3 The CO2 Molecule . 209 9.6.4 The C2H2 Molecule . 210 9.7 Molecular Vibrations in Other Molecules . 212 9.7.1 Vibrations of the NH3 Molecule . 212 9.7.2 Vibrations of the CH4 Molecule . 214 vi CONTENTS 9.7.3 Vibrations of the B12H12 Molecule . 215 9.8 Raman E®ect . 218 9.8.1 The Raman E®ect for H2 . 221 9.8.2 The Raman E®ect for H2O . 221 9.8.3 The Raman E®ect for NH3 . 221 9.8.4 The Raman E®ect for CH4 . 222 9.8.5 The Raman E®ect for CO2 and C2H2 . 222 9.8.6 The Raman E®ect for Planar XH3 . 223 9.8.7 The Raman E®ect for B12H12 . 223 9.9 Rotational Energy Levels . 224 9.10 Vibrational-Rotational Interaction . 227 9.11 Wigner{Eckart Theorem and Selection Rules . 230 9.12 Selected Problems . 232 10 Permutation Groups 235 10.1 Introduction . 236 10.2 Classes of Permutation Groups . 239 10.3 Number of Irreducible Representations . 242 10.4 Basis Functions of Permutation Groups . 243 10.5 Pauli Principle in Atomic Spectra . 245 10.5.1 Two-Electron States . 246 10.5.2 Three-Electron States . 250 10.5.3 Four-Electron States . 255 10.5.4 Five-Electron States . 258 10.6 Discussion . 260 10.7 Selected Problems . 262 11 Transformation of Tensors 267 11.1 Introduction . 267 11.2 Independent Components of Tensors . 270 11.3 Tensors under Permutations . 271 11.4 Independent Components of Tensors . 276 11.5 Tensors Arising in Non-Linear Optics . 277 11.5.1 Cubic Symmetry { Oh . 277 11.5.2 Tetrahedral Symmetry { Td . 280 11.5.3 Hexagonal Symmetry . 281 11.5.4 Hexagonal Symmetry . 282 CONTENTS vii 11.6 Elastic Modulus Tensor . 283 11.6.1 Full Rotational Symmetry: 3D Isotropy . 284 11.6.2 Icosahedral Symmetry . 288 11.6.3 Cubic Symmetry . 289 11.6.4 Full Axial Symmetry . 291 11.6.5 Hexagonal Symmetry . 293 11.6.6 Other Symmetry Groups . 295 11.7 Selected Problems . 295 12 Space Groups 299 12.1 Simple Space Group Operations . 299 12.2 Space Groups and Point Groups . 306 12.3 Compound Space Group Operations . 308 12.4 Incompatibility of Five-Fold Symmetry . 311 12.5 Two Dimensional Space Groups . 315 12.5.1 Five Two-dimensional Bravais Lattices . 315 12.5.2 Notation . 315 12.5.3 Listing of the Space Groups . 316 12.5.4 2D Oblique Space Groups . 318 12.5.5 2D Rectangular Space Groups . 318 12.5.6 2D Square Space Group . 327 12.5.7 2D Hexagonal Space Groups . 335 12.6 Three Dimensional Space Groups . 335 12.6.1 Examples of Non-Symmorphic 3D Space Groups . 336 12.7 Selected Problems . 342 13 Group of the Wave Vector and Bloch's Theorem 345 13.1 Introduction . 345 13.2 Bloch's Theorem . 346 13.3 Group of the Wave Vector . 349 13.3.1 Reciprocal Lattice . 352 13.4 Simple Cubic Lattice . 353 13.5 High Symmetry Points and Axes . 359 13.6 Group Operations on Bloch Functions . 365 13.7 Compatibility Relations . 368 13.7.1 Irreducible Representations . 371 13.8 Selected Problems . 372 viii CONTENTS 14 Applications to Lattice Vibrations 375 14.1 Introduction . 375 14.2 Lattice Modes Relative to Molecular Vibrations . 379 14.3 Zone Center Phonon Modes . 381 14.3.1 In the NaCl Structure . 381 14.3.2 In the Perovskite Structure . 383 14.3.3 Phonons in the Diamond Lattice . 387 14.3.4 Phonons in the Zincblende Structure . 391 14.4 Lattice Modes Away From ~k = 0 . 392 ¼ 14.4.1 Phonons in NaCl at the X point k = a (100) . 393 14.4.2 Phonons in BaTi3 at the X point . 394 14.5 Phonons in Te and Quartz . 399 14.5.1 Phonons in Tellurium . 400 14.5.2 Phonons in ®-Quartz . 407 14.5.3 E®ect of Uniaxial Stress on Phonons . 414 14.6 Lattice Modes in High Tc Related Materials . 417 14.6.1 The K2NiF4 Structure . 417 14.6.2 Phonons in the YBa2Cu3O6 Structure . 419 14.6.3 In The YBa2Cu3O7 Structure . 421 14.7 Selected Problems . 424 15 Use of Standard Reference Texts 425 15.1 Introduction . 425 15.2 Determination of the Crystal Structure . 426.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    706 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us