Principles and Techniques of Remote Sensing

Principles and Techniques of Remote Sensing

BASIC ORBIT MECHANICS 1-1 Example Mission Requirements: Spatial and Temporal Scales of Hydrologic Processes 1.E+05 Lateral Redistribution 1.E+04 Year Evapotranspiration 1.E+03 Month 1.E+02 Week Percolation Streamflow Day 1.E+01 Time Scale (hours) Scale Time 1.E+00 Precipitation Runoff Intensity 1.E-01 Infiltration 1.E-02 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Length Scale (meters) 1-2 BASIC ORBITS • Circular Orbits – Used most often for earth orbiting remote sensing satellites – Nadir trace resembles a sinusoid on planet surface for general case – Geosynchronous orbit has a period equal to the siderial day – Geostationary orbits are equatorial geosynchronous orbits – Sun synchronous orbits provide constant node-to-sun angle • Elliptical Orbits: – Used most often for planetary remote sensing – Can also be used to increase observation time of certain region on Earth 1-3 CIRCULAR ORBITS • Circular orbits balance inward gravitational force and outward centrifugal force: R 2 F mg g s r mv2 F c r g R2 F F v s g c r 2r r T 2r 2 v gs R • The rate of change of the nodal longitude is approximated by: d 3 cos I J R3 g dt 2 2 s r 7 2 1-4 Orbital Velocities 9 8 7 6 5 Earth Moon 4 Mars 3 Linear Velocity in km/sec in Linear Velocity 2 1 0 200 400 600 800 1000 1200 1400 Orbit Altitude in km 1-5 Orbital Periods 300 250 200 Earth Moon Mars 150 Orbital Period in MinutesPeriodOrbitalin 100 50 200 400 600 800 1000 1200 1400 Orbit Altitude in km 1-6 ORBIT INCLINATION EQUATORIAL I PLANE EARTH ORBITAL PLANE 1-7 ORBITAL NODE LONGITUDE SUN ORBITAL PLANE EARTH VERNAL EQUINOX 1-8 SATELLITE ORBIT PRECESSION 1-9 CIRCULAR GEOSYNCHRONOUS ORBIT TRACE 1-10 ORBIT COVERAGE • The orbit step S is the longitudinal difference between two consecutive equatorial crossings • If S is such that N S 360 ; N, L integers L then the orbit is repetitive. S 1-11 PERIODIC COVERAGE PATTERNS FOR SUN-SYNCHRONOUS ORBITS 1-12 Example: 223 orbits in 16 days 1-13 Example: 225 orbits in 16 days 1-14 Example: 227 orbits in 16 days 1-15 Example: 233 orbits in 16 days (LandSat) 1-16 Example: 241 orbits in 16 days 1-17 Example: SRTM Orbit 1-18 QuikSCAT Orbit: 14 Orbits per day 1-19 QUIKSCAT Swaths 1-20 ELLIPTICAL ORBITS • The orbit is defined by: a1 e2 r 1 e cos a 3 T 2r 2 gs R r 2b 2a 1e2 2a 1-21 ELLIPTICAL GEOSYNCHRONOUS ORBIT TRACE 1-22 ELLIPTICAL ORBIT GROUND TRACE 1-23 ORBIT SELECTION Minimize Earth atmospheric drag --> h > 200 km Global coverage --> polar or near-polar orbit Constant illumination geometry --> sun-synchronous orbit Thermal inertia observations --> day and night pass over same area Minimize radar sensor power --> low altitude Minimize gravity anomalies perturbation --> high altitude Measure gravity anomalies --> low altitude Continuous monitoring --> geostationary or geosynchronous orbit 1-24.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    24 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us