KLAIPEDA UNIVERSITY FACULTY OF MARINE ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING I________________________HEREBY CONIFIRM Head of department: prof. dr. Eleonora Guseinovienė 2013 BACHELOR STUDY PROGRAME OF ELECTRICAL ENGINEERING (Code of studies 612H62003) FINAL THESIS RESEARCH OF PERMANENT MAGNET GENERATOR WITH COMPENSATED REACTANCE WINDINGS Editor: ________________________ Supervisors: Prof. dr. Eleonora Guseinovienė 2013 Boris Rudnickij 2013 Authors: TEI-09 Oleg Lyan HENALLUX Vincent Monet 2013 Klaipėda, 2013 TEI-09, O.Lyan, V.Monet Research of PMG with compensated reactance winding ABSTRACT In this thesis, a patented “bifilar” coil (BC) type permanent magnet generator (PMG) is constructed for scientific research and comparison with other technologies. The features, working principle and elements of the BCPMG are analyzed. The BCPMG is developed from the iron-cored “bifilar” coil topology based on (1) in an attempt to overcome the problems with current rotary type generators, which have so far been dominant on the market. One of the problems is armature reactance , which is usually bigger than resistance . The circumstance creates difficulties for designers and operators of the generator. That is why patented technology is offered to partially remove or absolutely neglect the reactance of the machine. Drawings of the PMG parts and assembly are added. A finite element magnetic model (FEMM) is presented and analyzed. Also, this thesis contains an experimental analysis of the PMG characteristics, such as no- load losses and EMF vs. speed, loaded voltage drop, power output and efficiency vs. load current at different speeds. 3 TEI-09, O.Lyan, V.Monet Research of PMG with compensated reactance winding LIST OF TABLES 1.1. Table. “Alxion” constructors catalogue parameters ................................................................... 12 1.2. Table. “MOOG” constructors catalogue parameters .................................................................. 12 1.3. Table. Prototype generator specifications .................................................................................. 15 1.4. Table. Nominal characteristics of constructed TFPMDG .......................................................... 16 2.1. Existing magnet materials and parameters ................................................................................. 23 3.1. Table. Measurement device ........................................................................................................ 31 3.2. Table. Parameters of driving machines ...................................................................................... 31 3.3. Table. Motor current voltage data from A2. ............................................................................... 35 3.4. Table. Motor terminal voltage data from V2. ............................................................................. 35 3.5. Table. PMG terminal EMF frequency data from F. ................................................................... 36 3.6. Table. Power losses, calculated data. ......................................................................................... 37 3.7. Table. The parameters of calculated curves. .............................................................................. 38 5.1. Table. Practical parameters of the PMG topology ..................................................................... 46 5.2. Table. Consumed material quantity ............................................................................................ 46 0.1. Table. EMF and frequency data for phase A from V1, F ........................................................... 52 0.2. Table. EMF and frequency data for phase B from V1, F ........................................................... 53 0.3. Table. EMF and frequency data for phase C from V1, F ........................................................... 54 0.4. Table. 8,75 Hz, voltage and current data from F, V1, A1 .......................................................... 55 0.5. Table. 11,02 Hz, voltage and current data from F, V1, A1 ........................................................ 56 0.6. Table. 14,14 Hz, voltage and current data from F, V1, A1 ........................................................ 57 0.7. Table 17,80 Hz, voltage and current data from F, V1 and A1 ................................................... 58 0.8. Table. 22,89 Hz, voltage and current data from F, V1, A1 ........................................................ 59 0.9. Table. 28.80 Hz, voltage and current data from F, V1, A1 ........................................................ 60 0.10. Table. 44,00 Hz, voltage and current data from F, V1, A1 ...................................................... 61 0.11. Table. 56,40 Hz, voltage and current data from F, V1, A1 ...................................................... 62 0.12. Table. 71,90 Hz, voltage and current data from F, V1, A1 ...................................................... 63 0.13. Table. 8,75 Hz, power, losses, efficiency, power factor calculated data .................................. 64 0.14. Table. 11,02 Hz, power, losses, efficiency, power factor calculated data ................................ 65 0.15. Table. 14,14 Hz, power, losses, efficiency, power factor calculated data ................................ 66 0.16. Table. 17,8 Hz, power, losses, efficiency, power factor calculated data .................................. 67 0.17. Table. 22,89 Hz, power, losses, efficiency, power factor calculated data ................................ 68 0.18. Table. 28,80 Hz, power, losses, efficiency, power factor calculated data ................................ 69 0.19. Table. 44,00 Hz, power, losses, efficiency, power factor calculated data ................................ 70 0.20. Table. 56,40 Hz, power, losses, efficiency, power factor calculated data ................................ 71 4 TEI-09, O.Lyan, V.Monet Research of PMG with compensated reactance winding 0.21. Table. 70,90 Hz, power, losses, efficiency, power factor calculated data ................................ 72 LIST OF EQUATIONS 3.1. Equation. Mean value is calculated by know formula of arithmetic mean from (14): ............... 35 3.2. Equation. Ohm's law formula from (15) as the law explained in (16 p. 54), also in (17): ......... 36 3.3. Equation. Electrical power calculation explained with (18) and (17): ....................................... 36 3.4. Equation. Joule’s first law (heating) formula explained (19): .................................................... 36 3.5. Equation. Synchronous impedance using Ohm’s law for AC circuits ....................................... 38 3.6. Equation. Reactance calculation from scalar vector formula ..................................................... 38 3.7. Equation. Short circuit current of SG with armature resistance (2 p. 330) ................................ 39 3.8. Equation. Vector and scalar representation of terminal voltage based on Kirchhoff’s II law ... 39 3.9. Equation. Relation between terminal voltage and load current .................................................. 39 3.10. Equation. Terminal voltage of PMG performance ................................................................... 39 3.11. Equation. 3 phase electric power of SG. .................................................................................. 41 LIST OF FIGURES 1.1. Fig. View of a synchronous AC generator ................................................................................. 10 1.2. Fig. In-runner PMG construction: (a) realistic view, (b) 3D CAD view ................................... 11 1.3. Fig. In-runner PMG construction 3D CAD view ....................................................................... 13 1.4. Fig. Non-slotted axial field PMG ............................................................................................... 14 1.5. Fig. Prototype axial flux PMG ................................................................................................... 15 1.6. Fig. The structure of the axial flux permanent magnet generators. (1) Stator core holder. (2) Stator core. (3) Armature winding. (4) Rotor Disk. (5) Permanent Magnet ..................................... 16 1.7. Fig. PM wave energy converter generator.................................................................................. 17 2.1. Fig. Cross section view of PMG topology ................................................................................. 18 2.2. Fig. Axial section view of PMG topology .................................................................................. 19 2.3. Fig. Magnetic circuit model of PMG topology .......................................................................... 19 2.4. Fig. Single wound rod of PMG topology stator ......................................................................... 20 2.5. Fig. Permanent magnet rotor generator. (a) surface-mounted magnets. (b) Inset (buried) magnets. (c) Buried magnet with radial magnetization. (d) Buried magnet with circumferential magnetization (2 p. 355) .................................................................................................................... 21 2.6. Fig. Surface mounted magnets [1] on the ferromagnetic core [5] .............................................. 22 2.7. Fig. 3D isometric view of PMG construction ............................................................................ 22 2.8. Fig. Magnetic circuit flux lines of PMG topology with double magnets. .................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages71 Page
-
File Size-