DAPNIA-SPhT Joint Seminar, 21 May 2007 Exotic Neutrino Physics in the light of LSND, MiniBooNE and other data Marco Cirelli + Stéphane Lavignac SPhT - CEA/Saclay Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK CHOOZ erde 10–3 PaloV Super-K+SNO Cl +KamLAND ] 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND Simple theory: [eV 2 –6 SNO m 10 |ν! = cos θ|ν1! + sin θ|ν2! Super-K ∆ −E1t −E2t |ν(t)! = e cos θ|ν1! + e sin θ|ν2! Ga 2 Ei = p + mi /2p 2 –9 ν ↔ν m L 10 e X 2 2 ∆ ν ↔ν P ν → ν θ µ τ ( α β) = sin 2 αβ sin ν ↔ν E e τ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND Simple theory: [eV 2 –6 SNO m 10 |ν! = cos θ|ν1! + sin θ|ν2! Super-K ∆ −E1t −E2t |ν(t)! = e cos θ|ν1! + e sin θ|ν2! Ga 2 Ei = p + mi /2p 2 –9 ν ↔ν m L 10 e X 2 2 ∆ ν ↔ν P ν → ν θ µ τ ( α β) = sin 2 αβ sin ν ↔ν E e τ ν ↔ν Simple phenomenology: e µ 2 solar ν → ν : ∆m21, θ12 10–12 e µ,τ 10–4 10–2 100 102 2 2 atmo ν µ → ν τ : ∆m32, θ23 tan θ 2 http://hitoshi.berkeley.edu/neutrino SBL ν e, µ → ν x : ∆m32, θ13 Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND Simple theory: [eV 2 –6 SNO m 10 |ν! = cos θ|ν1! + sin θ|ν2! Super-K ∆ −E1t −E2t |ν(t)! = e cos θ|ν1! + e sin θ|ν2! Ga 2 Ei = p + mi /2p 2 –9 ν ↔ν m L 10 e X 2 2 ∆ ν ↔ν P ν → ν θ µ τ ( α β) = sin 2 αβ sin ν ↔ν E e τ νe↔νµ But: LSND does not fit: –12 2 2 10 –4 –2 0 2 ∆mLSND ! 1 eV 10 10 10 10 tan2θ −3 θ ! 10 http://hitoshi.berkeley.edu/neutrino LSND Particle Data Group 2006 Introduction The LSND signal does not fit. add new flavours Complicate the simple picture: modify oscillation physics (more or less radically) Sterile neutrinos, CPT, Lorentz, MaVaNs, xDims, anomalous muon decay, neutrino decay... Beyond resolving the LSND puzzle, this exotic neutrino physics might be justified by new physics beyond the SM, and might give rise to subleading effects in other neutrino experiments. Introduction The LSND signal does not fit. add new flavours Complicate the simple picture: modify oscillation physics (more or less radically) We will review aspects of: Sterile neutrinos, CPT, Lorentz, MaVaNs, xDims, anomalous muon decay, neutrino decay... Beyond resolving the LSND puzzle, this exotic neutrino physics might be justified by new physics beyond the SM, and might give rise to subleading effects in other neutrino experiments. Why Lorentz and/or CPT Lorentz, CPT: - fundamental ingredients of ordinary Quantum Field Theories (including the SM) - have been tested with high precision (K0-K0 system, charged lepton sector...) Why should they be violated in the neutrino sector? Why Lorentz and/or CPT Lorentz, CPT: - fundamental ingredients of ordinary Quantum Field Theories (including the SM) - have been tested with high precision (K0-K0 system, charged lepton sector...) Why should they be violated in the neutrino sector? - neutrinos are “special”: no conserved charge, can be Majorana ⇑ requires new physics beyond SM 2 Mweak −4 - m ν ∼ e V suggests Λ n e w ∼ ∼ 1 0 M Pl : mν Quantum Gravity might violate Lorentz and/or CPT Still very speculative possibilities! Lorentz Basics Possible origin: - spontaneous breaking - non trivial background in x-dim - non-commutative field theory - quantum gravity... In absence of an explicit model, parameterize as: Colladay, Kostelecky 1997 L = LSM + L(Lor(en(tz Kostelecky, Mewes 2003 for neutrinos (renormalizable⇑ case): i ↔ L(Lor(en(tz = (a ) L¯ γµL + (c ) L¯ γµ Dν L µ ij i j 2 µν ij i j aµ charged leptons interactions , c GeV µν must be tiny −17 but ∼ 1 0 is enough to affect neutrino propagation! Lorentz phenomenology 3 3 -Unusual energy dependence of fla1 vor conversions: 1 0.51 1 1 GeV L 0.5 0.51 es 2003 instead of usual : L or L E 1 GeV w 0.5 0.5 Me E 1 , 10 GeV 0 0 -1 2 however conspiracies can reproduce 0.5 -1 -0.5 0 0.5 1 10 1 10 10 cos Θzenith 10 GeV 0 E (MeV) 0 ostelecky -1 2 the usual dependance at given energies: -1 -0.5 0 0.5 1 K 10 1 10 10 P P E FIG. 1: νµ→νµ averaged ovecroaszΘimzeuntithhal angle for the bicycle FIG. 3: ( νe→νe )adiabatic avera(MgeedVo)ver one year (solid) and model (solid) and for a conventional case with mass (dotted). at intervals between an equinox and a solstice (dashed). FIG. 1: Pν →ν averaged over azimuthal angle for the bicycle FIG. 3: (Pν →ν )adiabatic averaged over one year (solid) and -Direction dependence of flavor conµ µversions: e e model (solid) and for a conventional case with mass (dotted). at intervals between an equinox and a solstice (dashed). 1 1 0.5 es 2003 atmospheric neutrinos at SK: 1 1 GeV w 1 Me 1 , 0.5 P ν → ν depends on azimuthal angle 0.5 µ µ 0.5 o 1 GeV 1 (Θzenith = 36 ) 10 GeV 0.5 0 ostelecky -1 2 0.5 S E N W S K 3 10 1 10 10 10 GeV E (1) ˆ X ˆ Y XX Y Y 0 (MeV) (Bs )ab = N N (cL)ab − (cL)ab FIG. 2: Pν →ν averaged over zenith angle for the bicycle -1 2 terrestrial experiments: S µ µ E 0.6 N W S 10 1 10 10 − Nˆ X Nˆ X − Nˆ Y Nˆ Y (c )XY , (11) ! L "abmodel (solid) and for a conventional case with mass (dotted). FIG. 4: (Pν →ν )adiabatic for some modified models. es 2004 e e E (1) 1 X X Y Y XX Y Y y (MeV) t ˆ ˆ ˆ ˆ w P i (Bc )ab = − N N − N N (cL)ab − (cL)aPb ν →ν ν¯ →ν¯ !2 " FIG. 2: µ µ averl aged over zenith angle for the bicycle µ e changes due to Earth rotation i 0.4 b X Y XY Me ˆ ˆ , − 2N! N (cL)ab . "! model (sol(i1d"2)) and for a a conventional case with mass (dotted). Pν →ν b FIG. 4: ( e e )adiabatic for some modified models. o X Y Z atmospheric neutrinr os, which is a signal for Lorentz vi- ˆ Pˆ ˆ = 0.26% p 0.2 (plot: LSND, with daIn tyhe sae evxeragepressions, N ! , N ν ¯ µ, N→ aν¯ re d "i re c t io n a l f a ct o r s ) combination of effects produces ripples in the binned flux ostelecky containing information about the neutroinlao-tbieoanm.diFreocr- exampl% e, consider neutrinos propagating in K near the equinoxes, which might be detected in detailed tion with respect to the Earth. At the datethtmeectoohrsoplorhciazetoironinc,tanlepultarnineoosf,0twhheidcheteisctaors.igNneaultfroinroLsoorreingitnzavt-i- let θ be the angle between the beam and the vertical up- 0 5 10 15 202 ecxopmerbimineanttioanl aonfaelffyesecstsopf reoxdisutcinegs roirppfuletsurine dthaetab.inned flux oilnagtiforno.mFtohreeexaasmt oprlew, ecsotnhsaidveercnoseuΘTtr=in0o,s ∆prmopΘa=ga0t,inagndin ward direction, let φ be the angle between the beam and ⊕ (hours) Although detection of the semiannual variation would south measured towards the east, and ltehtheχenbhceeothrneizocoloantst-cailllpatlaionnes.ofInthceondtertaesctt,otrh.oNseeuentrtienroinsgotrhigeindaet-- near the equinoxes, which might be detected in detailed P itude of the detector. Then, the directional factors are FIG. 1: Variations of the percent probability 2ν¯µ→ν¯e over represent a definite positive signal for Lorentz violation, itnegctforormfrotmhetehaestnoorrthweosrtshoauvteh ceoxspΘeri=en0c,e∆ampseu=do0m, asnsd experimental analyses of existing or future data.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages72 Page
-
File Size-