Numerical Integration

Numerical Integration

Numerical Integration ChEn 2450 b Given f(x), we want to calculate the integral over some region [a,b]. f(x)dx a Concept: Approximate f(x) locally as a polynomial. 1 Integration.key - October 31, 2014 Midpoint Rule Trapezoid Rule Concept: Approximate f(x) as a Concept: Approximate f(x) as a constant on the interval [a,b]. linear function on the interval [a,b]. b b + a b Triangle area. Rectangle area. f(x)dx (b a) f b a f(x)dx −2 (f(b) f(a)) + f(a) (b a) a ⇥ − 2 ⇥ − − ⇤ ⇥ a b a − [f(a) + f(b)] ⇥ 2 • Requires function • Convenient form for tabular (discrete) data. f(x) value at the midpoint f(x) (can be a problem for • Doesn’t require tabular/discrete data). equally spaced data. a b • ∆x = b-a x a x b Simpson’s 1/3 Rule Simpson’s 3/8 Rule Concept: Approximate f(x) as a Concept: Approximate f(x) as a quadratic on the interval [a,b]. cubic on the interval [a,b]. b b ∆x a+b 3∆x f(x)dx f(a) + 4f + f(b) f(x)dx (f(x0) + 3f(x1) + 3f(x2) + f(x3)) ≈ 3 2 ≈ 8 ⇧a a ⇤ ⇥ ⌅ • Requires four equally spaced • Requires three equally spaced points on interval [a,b]. f(x) points on interval [a,b]. f(x) • ∆x = (b-a)/3 • ∆x = (b-a)/2 • xi = a + i∆x a b a b x x 2 Integration.key - October 31, 2014 Example: Discrete Data Integration CO2 Emissions in US from How much CO2 was emitted from electrical electrical power generation. power generation nation-wide from 1990-2006? | Metric Tons CO2! b b a Year | Emitted in US! Trapezoid rule: f(x)dx − [f(a) + f(b)] ≈ 2 -------+-------------! a 1990 | 1.93125e+09! 1990-1991: 1991 | 1.92804e+09! 1991 1990 1992 | 1.94959e+09! − 1.92804 109 + 1.93125 109 = 1.9296 109 2 ⇥ ⇥ ⇥ 1993 | 2.03314e+09! 9 x 10 1994 | 2.06390e+09! 3 ⇥ 1995 | 2.08351e+09! 1996 | 2.16126e+09! 2.5 1997 | 2.23271e+09! 1998 | 2.32414e+09! 2 1999 | 2.33866e+09! 2000 | 2.44172e+09! 1.5 10 2001 | 2.38975e+09! Total 1990-2006: 3.5923×10 2002 | 2.39505e+09! 1 36 Gigatons 2003 | 2.41568e+09! Metric Tons CO2 Emitted 2004 | 2.45693e+09! 0.5 2005 | 2.51361e+09! 2006 | 2.45980e+09 0 1990 1995 2000 2005 Data from U.S. Department of Energy. Year 3 Integration.key - October 31, 2014 Example: Discrete Data Integration b For a pure gas, the “fugacity,” f, b a Trapezoid rule: f(x)dx − [f(a) + f(b)] may be determined as: ≈ 2 a f p z 1 f 800 z 1 ln = − dp ln = − dp p 0 p 800 p ⇥ ⇤ ⇥ ⌅0 8 pi+1 pi zi+1 1 zi 1 Data for N2 at 25 C: − − + − ⇥ 2 p p i=1 i+1 i p (atm) | z (-)! ⇤ ⇥ 4 x 10 10 ---------+---------! f 10 10−3 0.998 1 1.000 1 ln = − − + − 800 2 10 0.001 0.001 | 1.000! ⇥ ⇥ 8 50 10 0.996 1 0.998 1 + − − + − 10.000 | 0.998! 2 50 10 ⇥ 6 100 50 1.004 1 0.996 1 50.000 | 0.996! + − − + − 2 100 50 4 ⇥ 100.000 | 1.004! 1)/p 200 100 1.057 1 1.004 1 + − − + − (z 2 200 100 2 200.000 | 1.057! ⇥ 300 200 1.146 1 1.057 1 + − − + − 0 300.000 | 1.146! 2 300 200 ⇥ 400 300 1.254 1 1.146 1 400.000 | 1.254! + − − + − 2 2 400 300 ⇥ 600.000 | 1.495! 600 400 1.495 1 1.254 1 4 + − − − 0 200 400 600 800 2 600 400 p 800.000 | 1.723 ⇥ 800 600 1.723 1 1.495 1 + − − − 2 800 600 f = 1220 atm. Determine f at 800 bar. ⇥ Could we apply either Simpson’s rule here? Why/why not? 4 Integration.key - October 31, 2014 Quadrature & Composite Rules (for continuous functions) Concept: Apply a quadrature rule over many subintervals in [a,b]. f(x) f(x) We can add more subintervals to better approximate the integral. a b x a x b b I = f(x)dx Za Trapezoid x2 x1 x3 x2 xn xn 1 rule over n − (f(x2)+f(x1)) + − (f(x3)+f(x2)) + + − − (f(xn)+f(xn 1)) ⇥ 2 2 ··· 2 − intervals. 1 1 If ∆x is constant, I ∆x f(x1)+f(x2)+f(x3)+ + f(xn 1)+ f(xn) ≈ 2 ··· − 2 n 1 f(x ) f(x ) − = ∆x 1 + n + f(x ) Composite 2 2 i " i=2 # Trapezoid rule X ∆x I f(x1) + 4f(x2) + f(x3) + f(x3) + 4f(x4) + f(x5) + + f(xn 2 + 4f(xn 1) + f(xn) Composite ⇥ 3 · · · − − ⇥ ∆x Simpson = [f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + 2f(x5) + + 2f(xn 2) + 4f(xn 1) + f(xn)] 1/3 rule 3 ⇧ ⌅⇤ ⌃ ⇧ ⌅⇤ · · ·⌃ −⇧ −⌅⇤ ⌃ NOTE: could simply use the basic rule on each interval - no real need to use composite rules other than efficiency... 5 Integration.key - October 31, 2014 Miscellaneous Numeric Integration in Adaptive Quadrature MATLAB: Concept: only refine only intervals where needed (not everywhere). q=quad(fname,a,b,tol) One approach: • Numerically evaluate the function on the interval [a,b] using the tolerance tol. 1. Evaluate f(x) using n intervals on [a,b]. • Uses an integrator based on adaptive 2. Evaluate f(x) using 2n intervals on [a,b]. Simpson’s quadrature. 3. Determine which intervals resulted in a q=trapz(x,y) change in the local integral approximation • Integrate discrete data numerically using larger than the tolerance and refine them. the trapezoid method. 4. Continue refining until tolerance is met. 6 Integration.key - October 31, 2014.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us