The Spinor Bose-Einstein Condensate: a Dipolar Magnetic Superfluid

The Spinor Bose-Einstein Condensate: a Dipolar Magnetic Superfluid

Ψ TThhee SSppiinnoorr BBoossee--EEiinnsstteeiinn CCoonnddeennssaattee:: AA DDiippoollaarr MMaaggnneettiicc SSuuppeerrfflluuiidd Dan Stamper-Kurn UC Berkeley, Physics Lawrence Berkeley National Laboratory, Materials Sciences Ψ Spinor gases mF = 2 Energy mF = 1 F=2 mF = 0 magnetically Optically m = -1 F trappable trapped F=2 m = -2 spinor gas F mF = -1 F=1 mF = 0 Optically mF = 1 trapped F=1 spinor gas B What do we want to know? ≈ χ χ χ ’ ≈ ρ ρ ρ ’ + + + + − +1,+1 +1,0 +1,−1 ∆ σ ,σ σ ,π σ ,σ ÷ ∆ ÷ ρ = ρ ρ ρ χ = ∆ χ + χ χ − ÷ ∆ 0,+1 0,0 0,−1 ÷ π ,σ π ,π π ,σ ∆ρ ρ ρ ÷ ∆ ÷ « −1,+1 −1,0 −1,−1 ◊ ∆χ − + χ − χ − − ÷ « σ ,σ σ ,π σ ,σ ◊ FC F = cosθ spin F m=1 coh erences y φ “orientation” x nematicity N m=2 coh erences “alignment” θ θ iφ −iφ ’ R∆e cos m =1 − e sin m = −1 ÷ « 2 2 ◊ + F′ = 2 1 1 1 12 2 2 y F =1 z x in this case small signal 2 (# photons/pixel) = + ( + + ε ) S Nγ 1 A ( 1) Fy Fy ⁄ ∝ n2D Direct imaging of Larmor precession m 0 0 3 l a n g i s t s a r t n y o F c 0.5 - ~ e s a h p 0 k a e time (50 s/frame) P Aliased sampling: 2 x 20 kHz – Observed rate = 38.097(15) kHz Spinor gas magnetometry B N atoms F F F φ Probe: t = 0 t = τ N N 0 0 N N B 0 1 N N 0 0 t = 0 t = τ > 1 ’ 1 1 Area-resolving: ∆B = ∆ ÷× = S × ∆ µ ÷ A « g B DTcoh n2 D ◊ Ttotal A Ttotal A Ψ Experimental demonstration Clarify fundamental and technical limits on precision single-particle and collective light scattering, experimental tricks unbiased phase estimation methods Measure background noise confirm areal and temporal scaling of sensitivity Measure localized magnetic field quantum-mechanical diffusion of magnetization actually measure limits to dynamic range magnetic background field with uncontrolled long-range inhomogeneities actually measure fictitious Z eeman shift from focused, off- resonance laser Ψ %F&ield“ measurements B AC Stark shift = “Fictitious” magnetic field Comparing atoms & SQUIDs Existing low freq. magnetometers actual duty cycle D ~ 0.003 (SQL) unity duty cycle D = 1 noise in backg round images —High resolution magnetometry with a spinor BEC,“ arXiv:cond-mat/0612685 Ψ B5ose-Einstein condensates with spin mF = 2 Energy mF = 1 F=2 mF = 0 magnetically trappable, Optically mF = -1 trapped F=2 mixtures decay m = -2 87 spinor gas F Long lived in Rb (Cornell group) mF = -1 F=1 mF = 0 Optically mF = 1 trapped F=1 spinor gas B Quantum fluids are described by vector order parameter (somewhat similar to 3He) FFC Ψ(x) Ψ(x) so what? Symmetries of order parameter broken symmetries + excitations, phase transitions, topologies Symmetries in interactions F=1 e.g. F=1 spinor, low B F=1 Ftot = 0 Ftot = 1 Ftot = 2 ultracold gas a0 no interactions a2 (s-wave) leads to spin waves single spatial mode a not allowed a (e.g. BEC) 0 2 Energy Scales in a Spinor Condensate Ψ (circa 2006) • Spin dependent interaction energy FC 2 = E spin c2 n F 8 Hz, or 400 picokelvin! ∝ ∆a Klausen, Bohn, Greene, PRA 64, 053602 (2001) • Non-linear (quadratic) Zeeman shift E = q F 2 quad z -1 + +1 0 + 0 q = (72 Hz / G 2 )h × B 2 isotropic anisotropic interaction energy dominates quadratic term dominates 2 0 = q (∝ B ) q 2 c2 n Q)uenching across a symmetry-breaking transition James Higbie, Sabrina Leslie, Lorraine Sadler, Mukund Vengalattore FC 2 = − + 2 E c F q Fz gradual (2nd order) transition = unmagnetized gas Fz 0 Tc (for BEC) ) T ( e unmagnetized, scalar state r u t a r e ferromagnetic state p m e T BEC q = 2 c quadratic Zeeman shift (q) Quench dynamics; phase-ordering kinetics z B Thold = 30 ms Thold = 90 ms = + ∝ iφ 0.4 nF T n(Fx iFy ) Ae 0.2 C × Asin(ωt +φ)] Signal 0.0 x ∝ Fy -0.2 -0.4 probe -y 0 5 10 15 20 Point number Thold = 150 ms Thold = 210 ms m 0 3 3 Spontaneously formed = φ ferromagnetism A n FT • inhomogeneously broken symmetry • ferromagnetic domains, large and small • unmagnetized domain walls marking rapid reorientation φ A / AMAX Thold = 30 60 90 120 150 180 210 ms Spontaneously formed = φ ferromagnetism A n FT • inhomogeneously broken symmetry • ferromagnetic domains, large and small Continuous spin texture • unmagnetized domain walls marking rapid ~50 micron pitch reorientation φ Alternating spin domains and domain walls A / AMAX 10 ms 60 90 120 150 180 210 Thold = 30 60 90 120 150 180 210 ms Ψ Ferromagnetism via spinodal decomposition m = 0 + m = ±1 m =1 + m = −1 Polar (Na) Separate Mix MIT Ferro (Rb) Mix Separate G-Tech = + mx 1 = mz 0 + = = − mx 1 Exponential timescale τ = > / ∆E =13.7(3)ms S = − = + mx 1 mx 1 Unmagnetized domain boundary of size πξ = 8.3µm ≅ ξ = µ Ferromagnetic domain of size S b S 2.6 m Timmermans, PRL 81 5718 (1998); Saito and Ueda, PRA 72, 023610 (2005) Ψ Spectrum of stable and unstable modes Bogoliubov spectrum = Gapless phonon (m=0 phase/density excitation) mz 0 Spin excitations Energies E 2 = (k 2 + q)(k 2 + q − 2) S scaled by c2n 3 qq = =q - =210. 501 2 E2 1 0 -1 0.0 0.5 1.0 1.5 2.0 k q>2: spin excitations are gapped by q(q − 2) 1>q>2: broad, —white“ instability 0>q>1: broad, —colored“ instability q<0: sharp instability at specific q0 * F T ,L (r +δ r)n(r +δ r) F T ,L (r)n(r) spin-spin …ƒ Ÿ G (δ r) = Re r correlation T ,L … +δ Ÿ … ƒ n(r r)n(r) Ÿ function r ⁄ rise time = 15(4) ms – compare to 13.7(3) ms measure of area of domain walls GT (x, z) phase separation occurs/symmetry broken spontaneously in disconnected radial bands Ψ Topological defect formation across a symmetry- breaking phase transition Kibble (1976), Zurek (1985) 5π φ = “causal horizon” 3 φ = 0 4π φ = 3 φ = 0 2π φ = 3 “Cosmology in the laboratory” Liquid crystals [Chuang et al, Science 251, 1336 (1991)] Superfluid helium [Hendry et al., Nature 368, 315 (1994)] Spontaneously formed spin vortices F T candidates: Mermin-Ho vortex (meron) mz=0 core F L “Polar core” spin vortex Thold = 150 ms Nature 443, 312 (2006) Spontaneously formed spin vortices candidates: × ’ FFC a(r) 1 Ψ = ∆ × −iφ ÷ ∆b(r) e ÷ ∆ −2iφ ÷ «c(r) × e ◊ Mermin-Ho vortex (meron) mz=0 core ≈a(r) × eiφ ’ FFC ∆ ÷ Ψ = ∆b(r) × 1 ÷ ∆ −iφ ÷ «c(r) × e ◊ “Polar core” spin vortex Broken chiral symmetry; Saito, Kawaguchi, Ueda, PRL 96 065302 (2006) Ferromagnetic spin textures generate helical spin pattern (uniform spin current) using inhomogeneous field Evolve dB /dz 0 z t n e i d a r g o / w t n e i d a r g h t i w Ψ Ferromagnetic spin textures clean starting point for studying dynamics energy budget: spin-dependent contact interaction: FC 2 − c2 n F ~ - 0.5 nK, minimized quadratic Zeeman shift: 2 q qF = excess ~ 30 pK; N = 60 Om z 2 spin current kinetic energy N ≥ 50 Om ν ≤ 1 Hz φ Ψ Dissolving spin textures A / AMAX 10 60 90 120 150 180 30 60 90 1 20 1 50 180 ms initial texture = uniform initial texture = wound up Dipolar interactions: magnetism in a quantum fluid @ 4 1014 cm-3 M ≈ µ = (µ µ ) self-field: B 0M 0 gF B n 23 G = µ 2 µ 2 energy per particle: E ( 0 gF B )n kB x 0.8 nK Comparison to other energy scales: total interaction energy: O ~ kB x 200 nK 52 Pfau, Santos, Lewenstein, others: Cr (6 OB), polar molecules (>137 OB) spin-dependent interaction energy: O ~ kB x 0.8 nK Yi and Pu, PRL 97, 020401 (2006); Kawaguchi, Saito, Ueda PRL 97, 130404 (2006) ferromagnetic spin texture: K.E. < kB x 30 pK Ψ PCresent/future directions/speculation Equilibrium phase diagram of spinor BEC vs. q, T, … effects of long-range, anisotropic interactions effects of dimensionality Phase transitions, quantum and thermal ascertain role of quantum vs thermal fluctuations: 2 temperatures quantum atom optics: is it still a BEC? critical exponents Phenomenology of spinor BEC dynamics domain walls, various spin vortices, interactions b/w them Spinor gas magnetometry surpass atomic shot noise; spatially resolved spin squeezing applications to …? Ψ Daniel Brooks, Jennie Guzman, Sabrina Leslie, Kevin Moore, Kater Murch, Tom Purdy, Lorraine Sadler, Ed Marti, Ryan Olf, Subhadeep Gupta, Mukund Vengalattore Looking for great students and postdocs http://physics.berkeley.edu/research/ultracold AFOSR .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us