Verification of Gyrokinetic Codes: Theoretical Background & Numerical Implementations

Verification of Gyrokinetic Codes: Theoretical Background & Numerical Implementations

N.Tronko 1, T.Goerler 2 , A.Bottino 2 , B.D.Scott 2, E.Sonnendrücker 1 Verification of Gyrokinetic codes: Theoretical background & Numerical implementations NumKin 2016, IRMA, Strasbourg, France 1 NMPP, Max Planck Institute für Plasmaphysik 2 TOK, Max Planck Institute für Plasmaphysik VeriGyro Project Participants Enabling Research Project on Verification of Gyrokinetic codes • Germany! Max Planck Insitute for Plasma Physics (Garching and Greifswald) • Switzerland SPC-EPFL, Lausanne • Finland! Aalto Univeristy • Great Britain University of Warwick • France CEA Cadarache, Université Paris IV, Rennes, Toulouse, Lorraine, Bretagne IRMA, Maison de la Simulation (Saclay) • USA Saint Michel’s College, VT NumKin 2016 VeriGyro Project @ IPP Garching Interdisciplinary Project in IPP Max Planck (Garching) NMPP Division (Numerical Methods for Plasma Physics) • Development and implementation of new algorithms for fusion and astrophysical plasma modeling • Development of libraries (i.e. Selalib) • Verification of existing codes • Participants: N. Tronko, E. Sonnendrücker Enabling Research Project VeriGyro TOK (Tokamak Theory) • Development of major codes • Plasma modeling and comparison with experimental results (ASDEX Upgrade) • Participants: T. Görler, A. Bottino, B. D. Scott NumKin 2016 VeriGyro Project: Motivation • Verification of Global (Electromagnetic) Gyrokinetic codes: Why? • Most popular tools for magnetised plasmas simulations: • Significant Development since last 10 years • Electrostatic gyrokinetic implementations : well established ! [Dimits Phys. Pl. 2000 , Bottino&Sonnendrücker J.Pl.Phys. 2015] • Global Electromagnetic gyrokinetic implementations: • Another level of complexity with respect to electrostatic codes • A lot of freedom for approximations (Poisson and Ampère equations) • Different codes use different version of GK equations) • What was missing in the beginning of VeriGyro (2014) ? • General hierarchy of the GK equations implemented numerically • Global Electromagnetic Intercode benchmark NumKin 2016 VeriGyro: Strategy & Accomplishments • Theory: Establishing Hierarchy of models for existing codes! (Task leader Natalia Tronko) • Systematic derivation from the Variational GK framework ! [Tronko, Bottino, Sonnendrücker, Phys.Plasmas 2016] • Verification of approximations consistency and regimes of applicability • Intercode Benchmark: challenging electromagnetic problems! (Task leader Tobias Görler) • Implicit numerical schemes verification • Microinstability characterization and exploration of required grid • Microturbulence: one of the next steps Linear intercode benchmark [Görler, Tronko, Hornsby et al Phys.Pl. 2016] NumKin 2016 VeriGyro: Intercode Benchmark Participating codes • PIC codes: • ORB5 [Jolliet Comp. Phys. Comm. 2007; Bottino PPCF, 2011; Tronko Phys. Pl., 2016] N. Tronko (IPP Garching) • EUTERPE [Kornilov Phys. Pl. 2004] R. Kleiber (IPP Greifswald) • Eulerian codes: • GENE [Jenko Phys. Pl.,2000; Görler, J.Comp. Phys. 2011] ! T. Görler (IPP Garching) • GKW [Peeters Comp. Phys. Comm. 2009; Buchholz Phys. Pl. 2014] ! W. Hornsby (IPP Garching) • Semi-Lagrangian: • GYSELA[Grandgirard J. Comput. Phys. 2006; Grandgirard Comp. Phys. Comm. 2016] V. Grandgirard, C. Norcini (CEA Cadarache) NumKin 2016 VeriGyro: Numerical resources • Supercomputer Helios (Japan) Hydra (IPP Garching)! • Since Oktober 2017 Marconi Fusion (Italy) • Using between 512 and 2048 processors (for ORB5) • CPU time pro simulation: 2h (adiab) towards several days (electromagnetic linear) NumKin 2016 PART I: Theoretical foundations • Gyrokinetic theory for numerical implementations: • Systematic derivation from the first principle of dynamics! • Second order Gyrokinetic Maxwell-Vlasov Parent model • Focus on the ORB5 code model • Continuous descriptions • Gyrokinetic dynamical reduction on single particle phase space • Systematic coupling of reduced particle dynamics with fields dynamics • Conservation laws and code diagnostics (ORB5) • Discretized description (ORB5) • Finite Element Monte-Carlo Particle-In-Cell Lagrangian • Discrete equations of motion NumKin 2016 PART II : Intercode Benchmark • Establishing common test case: • Adiabatic electrons simulations • Electrostatic (2 species) • Electromagnetic linear Benchmark • Identifying differences in simulations:! in function of the implemented model and numerical scheme! NumKin 2016 GK Orderings ⇢ ln B ✏ • Guiding- center: background quantities | ir | ⇠ B δf c δE δB • Gyrocenter: fluctuating fields | ?| | | ✏δ F ⇠ Bv ⇠ B ⇠ th e δφ ✏δ =(k ⇢i) • Gyrokinetics ? Ti • Drift-kinetics k ⇢i 1 k ⇢i 1 ? ⇠ ? ⌧ • Maximal ordering • Code ordering ✏ ✏ ✏B ✏δ B ⇠ δ ⌧ [Brizard, Hahm Rev.Mod.Phys., 2007] NumKin 2016 Local Particle coordinates • Non-canonical local particle coordinates 6D: Z↵ =(x, v) x,v ,µ,✓ ! k ? ⇢ • Rotating particle basis: b ✓ = b sin ✓ b cos ✓ b ? − 1 − 2 ⇢ = b cos ✓ b sin ✓ b b1 − b 2 • Magnetic • Velocity vector bdecompositionb b Momentum: 2 mv 1/2 adiabatic invariant µ = ? v = v b = v = v b +(2µmB) 2B k ? k ? b b b • Goal of the dynamical reduction: build up a change of variables such that µ˙ =0 fast gyromotion is uncoupled • Relevant dynamics on the reduced (4+1)D phase space: X,v ; µ k NumKin 2016 Two step dynamical reduction • Two polarization displacements x X + ⇢ (X,µ,✓)+⇢ (X,µ,✓) ⌘ 0 1 • Guiding-center displacement • Gyrocenter displacement 2 mc 2µ mc pz ⇢0 ⇢ ⇢0⇢ ⇢1 = φ1(X) A1 (X) ⌘ e mB ⌘ B2 r? − mc k r 0 ⇣ ⌘ (✏B) (✏δ) b⇠ O b ⇠ O • First order electromagnetic potential e 1 = φ1 pzA1 − mc k • Canonical gyrocenter momentum: e pz = mv + A1 (X + ⇢0 + ⇢1) k c k NumKin 2016 Second order Gyrocenter Lagrangian • Particle Lagrangian on the reduced phase space (X,pz,µ,✓) e mc GK theory does L = A + p b X˙ + µ ✓˙ H p c z · e − not stop here!!! ⇣ ⌘ b p2 • Non-perturbed dynamics (guiding-center) H = z + µB 0 2m ep • First order dynamics H = e gc (φ (X + ⇢ )) z gc (A (X + ⇢ )) 1 J0 1 0 − mc J0 1 0 The gyroaveraging operator: with respect to the guiding-center displacement 1 2⇡ gc [ (X + ⇢ (✓))] = d✓ (X + ⇢ (✓)) J0 1 0 2⇡ 1 0 Z0 NumKin 2016 Second order Hamiltonian hierarchy • Full FLR 2nd order electromagnetic Hamiltonian equivalent to Hahm 1988 electrostatic model 1 e 2 e2 @ Hfull = gc ( (X + ⇢ )) gc (X + ⇢ ) (X + ⇢ ) 2 2m c J0 1 0 −2mcJ0 @µ 1 0 1 0 ⇣ ⌘ ✓ ◆ Electromagnetice couplinge between GK Poisson and • Truncated: All 2nd FLR terms Ampère equations 2 FLR e 2 µ 2 1 µ 2 H2 = A1 (X) + A1 (X) + A1 (X) A1 (X) 2mc2 k 2B r? k 2 B k r? k 2 2 mc pz φ1(X) A1 (X) −2B2 r? − mc k nd • ORB5 2 Order : Second order FLR magnetic part and first order FLR in Electrostatic Polarization part 2 2 ORB5 e 2 1 µ 2 mc 2 H2 = A1 (X) + A1 (X) A1 (X) φ1(X) 2mc2 k 2 B k r? k − 2B2 |r? | Uncoupled GK Poisson and Ampère equations NumKin 2016 Gyrokinetic field theory Which components we do really need for building up a self- consistent model for a code? [Sugama Phys. Pl. 2000,! Brizard PRL 2000] 2 2 E1 B1 L = dV dW F (Z ,t ) L Z[Z ,t ; t], Z˙ [Z ,t ; t]; t + dV | | − | ?| 0 0 p 0 0 0 0 8⇡ sp X Z particles⇣ ⌘ Z fields 2⇡ 2 Z =(X,pz,µ,✓); dW = 2 B⇤dpzdµ; B1 = A1 m k ? r? k Goal: Coupling reduced particle dynamics with fields within the common mathematical structure Getting consistently reduced set of Maxwell-Vlasov equations F (Z0,t0) Distribution function of species “sp” at arbitrary initial time t0 Lp Gyrocenter Lagrangian: reduced motion of a single particle NumKin 2016 How to build up a gyrokinetic model consistently? • All approximations should be performed on the Lagrangian L before deriving the equations of motion • Approach guarantees energetic consistency of final equations • Symmetry properties of Lagrangian are automatically transferred to the equations • Set up polarization effects into the system (hierarchy of models): • Choice of the second order gyrocenter Hamiltonian defines reduced field- particles dynamics NumKin 2016 Quasi-neutrality approximation • Electrostatic contributions from fields and gyrocenter polarization 2 2 2 E1 mc 2 1 ⇢s 2 dV | | + dW dV F φ1 = dV 1+ φ1 8⇡ 2B2 |r? | 8⇡ λ2 |r? | Z Z Z ✓ d ◆ Polarization from the second order particle dynamics: ORB5 model 2 2 ORB5 e 2 1 µ 2 mc 2 H2 = 2 A1 (X)+ A1 (X) A1 (X) 2 φ1 (X) 2mc k 2 B k r? k − 2B |r? | k T k T mc2 λ2 B e ⇢2 B e d ⌘ 4⇡ne2 s ⌘ e2B2 Debye length Sound ion Larmor radius 2 2 2 ⇢s 4⇡nmc c 2 = 2 = 2 1 λd B vA NumKin 2016 Linearised polarisation approximation e mc B2 L = dW dV A + p b X˙ + µ✓˙ H F dV ? c z · e − − 8⇡ sp X Z ⇣⇣ ⌘ 2 ⌘ Z Up to (✏ ) b ⇠ O δ • Initially: Hamiltonian decomposition H = H0 + H1 + H2 • Dynamical part of distribution function (H0 + H1)F • Background part of distribution function H2F0 e mc L = dW dV A + p b X˙ + µ✓˙ H H F c z · e − 0 − 1 sp X Z ⇣⇣ ⌘ ⌘ b B2 dW dV H F dV ? − 2 0 − 8⇡ sp X Z Z This approximation leads to linearised field equations NumKin 2016 GK Field equations Phase space volume d⌦ dV dW ⌘ • Polarization equation in a weak form Test function δL φ1 =0 φ1 = φ1 δφ1 ◦ 2 mc 2 gc ✏δ d⌦ F0 φ1 = d⌦ b0 (φ1)(F0 + b✏δF1) B2 |r? | J sp sp X Z X Z δL • Ampere’s equation in a weak form A1 =0 Test function δA1 ◦ k k A1 = A1 b k k 2 1 2 e gc 2 pz gc dV A1 + ✏δ d⌦ 0 A1 F0 = d⌦ 0 A1 (F0 + ✏δF1) 4⇡ r? k mc2 J k mcJ bk Z sp Z sp Z X X Weak form of the equations of motion is suitable for the finite elements discretisation!!!! NumKin 2016 Vlasov equation Vlasov equation is reconstructed from the characteristics δL ˙ @ (H0 + H1) B⇤ c =0 X = b (H0 + H1) δZ @pz B⇤ − eB⇤ ⇥ r k k b B⇤ p˙z = (H0 + H1) Z =(X,pz,µ) −B⇤ · r k d @ dZ @ f(Z [Z ,t ,t];t)= f(Z,t)+ f(Z,t) dt 0 0 @t dt · @Z Linearized characteristics: only H0 contributions NumKin 2016 PIC code ORB5 “J.E” diagnostics PIC code: separation in calculation of fields and particles dynamics: Particles: characteristics Fields: Grid evaluation Controlling quality of the simulation: contributions from particles energy and fields energy should be calculated independently.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    50 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us