The Stefan Problem

The Stefan Problem

10.1090/mmono/027 TRANSLATIONS OF MATHEMATICAL MONOGRAPHS Volume 27 THE STEFAN PROBLEM by L I. RUBENSTEIN AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 02904 1971 nPOBJIEMA CTE$AH A JI. M . PYBWHU1TEMH JIaTBMMCKMM rocyAapcTBeHHH M yHMBepcMTe T MMeHw nETPA CTY^IK M BbHMCJIMTEJlbHblM UEHT P M3AaTejibCTB0 „3Baiir3He " Pural967 Translated fro m the Russian by A. D. Solomon Library o f Congress Card Number 75-168253 International Standard Book Number 0-8218-1577- 6 Copyright© 197 1 by the American Mathematical Society Printed in the United States of America All Rights Reserved May not be reproduced in any form without permission of the publishers PREFACE In recen t year s w e hav e witnesse d a n intensiv e developmen t o f th e Stefan problem , wit h whic h th e autho r ha s lon g bee n concerned . This monograp h wa s originall y intende d t o examin e th e importan t results concerned wit h th e classica l Stefa n proble m an d it s generaliza - tions, up to the present time, but thi s progra m coul d no t b e carrie d ou t completely, first of all because the literature concerned with this problem is continuousl y increasing , an d ver y importan t work , i n whic h th e Stefan problem i s treated a s a problem o f numerica l analysis , ha s bee n only partiall y publishe d an d partiall y announce d i n publication s an d at scientifi c conferences; 1* a t th e sam e tim e th e wor k planne d fo r ou r monograph was to a large extent complete . I n thi s regar d th e numerica l solution o f problem s o f Stefa n typ e i s usuall y discusse d i n monograph s in an extremely concis e manner. We will limit ourselve s t o brie f descrip - tions o f finite differenc e algorithm s whic h hav e bee n propose d fo r th e solution o f th e Stefa n proble m (Par t 2 , Chapte r VIII) ; a s a rul e w e will not give a justification o f th e algorith m bu t refe r th e reade r t o th e original literature. The autho r is , o n th e on e hand , mainl y intereste d i n the physical formulatio n o f a problem which reduces to some form of the Stefan problem (Par t 1 , Chapters I—IV) and , on the other hand , i n th e examination of general theoretical problems, i.e. problems of a qualitative character (Par t 2 , Chapter s I—VII) . I n Supplemen t 3 w e presen t illustrative examples o f th e numerica l solutio n t o problem s examine d i n the first part . I n th e first tw o supplement s w e presen t certai n know n results whic h ar e use d i n th e mai n part s o f th e book . At th e en d o f th e boo k w e includ e a bibliograph y o f th e problem . Unfortunately, man y source s wer e no t availabl e t o th e author . I t i s probable tha t man y work s exis t whic h hav e excape d hi s attention . Therefore w e mak e n o clai m o f completenes s fo r th e bibliography . The autho r take s thi s opportunit y t o expres s hi s appreciatio n t o his colleague s N . Avdoijins , M . Antimirov , A . Kuikis , H . German , We have in mind the joint work of B. M . Budak, F. P. VasiTev and A. B. Uspenskil, as presented in [15 ] and announced in their articles in a number of reports of conference s on numerica l analysi s (Mosco w Stat e Univ. , 1965) . in iv PREFACE E. Enikeeva, M. Zavorina, B. Martuzans, E. Pi^enkova and A. Skroman, who checked the accuracy o f th e numerica l solution s o f th e example s o f Supplement 3 and aide d th e autho r i n eliminatin g man y errors , a s wel l as t o E . Riekstiij s an d V . Abolinja , wh o rea d th e manuscrip t o f th e monograph. Th e autho r expresse s specia l thank s t o th e Recto r o f th e Stucki Institut e o f th e Latvia n Stat e University , Professo r V . A . Steinberg, an d t o th e directo r o f th e Universit y computin g center , Docent E . I . Arin , withou t whos e efficien t ai d th e monograp h coul d not hav e bee n brough t t o completion . L. RUBINSTEI N TABLE O F CONTENT S PREFACE ii i INTRODUCTION 1 1. Historica l survey 1 2. Notatio n and terminolog y 1 5 PART ONE . Physica l Problems Reducing to Problems of the Stefan Typ e CHAPTER I . DIFFUSIO N O F HEA T B Y CONDUCTIO N I N A MEDIU M WITH A CHANGE O F PHASE STAT E 1 8 1. Th e Stefan condition s 1 8 2. Freezin g o f the ground 2 0 3. Crystallizatio n o f a melt when a plate is immersed i n it . 2 5 4. Formatio n o f a continuous ingot 3 2 5. Zona l noncrucible melting o f a cylindrical rod 3 7 CHAPTER II . THERMA L DIFFUSIO N PROCESSE S I N A MEDIU M WITH VARIABL E PHAS E STAT E 3 9 1. Dissolutio n o f a gas bubble in a liquid 3 9 2. Dynamic s o f one-dimensiona l nonisotherma l evaporatio n of an ideal liquid mixture 4 3 3. Crystallizatio n o f a binary allo y 5 2 CHAPTER III . PROBLEM S O F THE THEOR Y O F FILTRATION 6 1 1. Forcin g o f a hydrauli c solutio n int o th e groun d (proble m ofVerigin) 6 1 2. Advanc e o f a water-oil interface i n an elastic regime 6 3 3. Invers e problems 7 1 CHAPTER IV . SOM E PROBLEM S O F MECHANIC S O F CONTINUOU S MEDIA THA T REDUCE T O PROBLEMS OF STEFAN TYP E ... 8 1 1. A proble m o f convectio n arisin g fro m crystallizatio n o f a supercooled melt 8 1 2. Hig h speed flow o f a soli d bod y i n a viscou s incompressibl e fluid 8 5 3. Nonstationar y flows o f a viscous plastic medium 8 9 v VI CONTENTS PART TWO . Th e Classical Stefan Proble m and its Generalizations CHAPTER I . TH E SINGLE-PHAS E STEFA N PROBLE M WIT H STRON G NONLINEARITY 9 4 1. Statemen t o f the problem. Formulation o f the basic results. 9 4 2. Reductio n to an integral equation. Theorem o f equivalence. 9 7 3. Existenc e o f the solution in the small 10 4 4. Uniquenes s of the solution 11 4 5. Stabilit y o f the solution 13 0 6. Furthe r observations 13 5 CHAPTER II . TH E CLASSICA L TWO-PHAS E STEFA N PROBLEM . TH E CASE O F A TWO-PHAS E INITIA L STAT E WIT H CONTINUOU S AGREEMENT O F BOUNDARY AN D INITIA L CONDITION S 14 1 1. Statemen t o f the problem 14 1 2. Th e first boundar y proble m o n a segmen t fo r a two-phas e initial stat e an d continuou s agreemen t o f boundar y an d initial conditions. Existence o f the solution in the large . 14 3 3. Asymptoti c behavior o f the solution to Problem B x 15 5 4. Degeneratio n o f one of the phases for t > t 0 16 1 5. Th e thir d boundar y problem . Existenc e o f th e solutio n in the large 16 4 6. Th e thir d boundar y problem . Asymptoti c behavio r o f the solution 17 0 7. Th e Cauchy-Stefan proble m 18 1 CHAPTER III . TH E INITIA L VELOCIT Y O F ADVANC E O F TH E INTER - PHASE BOUNDAR Y 190 1. Th e integral equation s o f Problem s B x an d A x withou t th e continuous agreement o f boundary and initial data 190 2. Initia l spee d o f th e interphas e boundary . Formulatio n o f the result 19 5 3. ProofofTheoremll.Thecase/xCO ) ^ 0 19 9 4. ProofofTheoremll.CaseACO ) = 0 20 5 5. Proo f o f Theorem 1 2 21 3 CHAPTER IV . SOLUTIO N O F PROBLEMS A X AND A 3 21 7 1. Th e first boundary problem (A x). Subsidiary function s . 21 7 2. Existenc e o f a solution to problem Ai 22 1 3. Th e third boundary problem (A 3) 23 1 CONTENTS vi i CHAPTER V . TH E DOUBLE-LAYE R STEFA N PROBLE M WIT H DE - GENERATION O F ON E O F TH E PHASE S A T TH E INITIA L MOMENT AN D A DISCONTINUIT Y I N TH E BOUNDAR Y AN D INITIAL CONDITION S 23 8 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    74 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us