Schmidt BT 2020.Pdf

Schmidt BT 2020.Pdf

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK Lehrstuhl für Informatik 10 (Systemsimulation) Investigation and Implementation of Visualization and Reconstruction Options for Breast-CT Simon Schmidt Bachelorthesis Investigation and Implementation of Visualization and Reconstruction Options for Breast-CT Simon Schmidt Bachelorthesis Aufgabensteller: Prof. Dr.-Ing. Harald Köstler Betreuer: Dr. David Heinemann (AB-CT) Bearbeitungszeitraum: 1.6.2020 – 2.11.2020 Erklärung: Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähn- licher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulati- on (Informatik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der Ba- chelorthesis einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt. Erlangen, den 1. November 2020 . Abstract The nu:view Breast-CT is the worlds first spiral Breast-CT. While already in clinical use, the system is still under on-going development. In the current clinical workflow, the acquired scans have to be reconstructed and then transferred to the clinical network before they can be reviewed on a workstation in another room. As the necessary amount of data for a single scan is huge, this can take long times. The goal of this thesis was therefore, to improve on those weak points by investigating viewing options which could be used in close proximity to the scanner. As the range of viewing solutions can reach from small local software to full-sized cloud solutions, an overview about different viewing concepts is given. Following this, the requirements and use cases for a close proximity viewing solution are defined exactly based on customer feedback. A promising way to reduce the amounts of processed data, is to select volumes of interest. Instead of the full scan, only those specific re- gions have to be reconstructed in higher resolution. To achieve those goals, different existing viewing solutions are compared, based on the defined requirements. Then, a proof of concept in software and hardware is imple- mented. This proof of concept is integrated into the default nu:view pipeline consisting of the Breast-CT Scanner and mulitiple workstations. The experimental implementa- tion is evaluated based on different criterias. It is shown, that noticeable improvements in reconstruction time and reconstruction size can be achieved. Contents List of Figures iii List of Tables iv List of Listingsv List of Abbreviations vi 1 Introduction1 1.1 Background . .1 1.2 Goals . .1 1.3 Scope of Thesis . .1 2 Clinical Workflow3 2.1 DICOM Standard . .3 2.2 PACS Systems . .3 2.3 nu:view Breast-CT . .3 3 Viewing Concepts5 3.1 Overview . .5 3.2 Operational Purposes . .5 3.2.1 Diagnosis and Post-Processing . .6 3.2.2 Early Quality Checks . .6 3.2.3 Reducing Amounts of Data . .7 3.3 Viewing Types . .7 3.3.1 Overview . .7 3.3.2 Pre-PACS Viewing . .8 3.3.3 Post-PACS Viewing . .9 3.3.4 Cloud Viewing . 10 3.4 Viewing Pipeline . 11 3.4.1 Overview . 11 3.4.2 Phase 1: Input . 11 3.4.3 Phase 2: Display . 12 3.4.4 Phase 3: Editing & Post-Processing . 14 3.4.5 Phase 4: Output . 14 4 Requirements 16 4.1 Retrospective . 16 4.2 Desired Purposes . 16 4.2.1 Clinical Evaluation . 17 4.2.2 Other Feedback . 17 4.2.3 Conclusion . 17 4.3 Non-Functional Requirements . 18 4.3.1 Overview . 18 4.4 Functional Requirements . 18 4.4.1 Overview . 18 4.4.2 Input: Local DICOM Studies . 19 4.4.3 Input: Command Line Interface . 19 4.4.4 Display: MPR . 19 Contents ii 4.4.5 Editing: VOI Selection . 20 4.4.6 Output: Export VOI Coordinates . 20 4.5 Comparison of Tools . 20 4.5.1 Overview . 20 4.5.2 RadiAnt DICOM Viewer . 21 4.5.3 3DSlicer . 21 4.5.4 ImpactView . 21 4.5.5 Conclusion . 21 5 Proof of Concept 23 5.1 Implementation . 23 5.1.1 Overview . 23 5.1.2 Pipeline . 23 5.1.3 Scan Monitoring . 25 5.1.4 ImpactReconCLI . 26 5.1.5 Coordinate Extraction . 28 5.2 Integration . 31 5.2.1 Hardware . 32 5.2.2 Network Topology . 32 5.2.3 AWS Configuration . 33 5.2.4 VWS Configuration . 33 5.2.5 RWS Configuration . 34 6 Evaluation 35 6.1 General . 35 6.2 Software Quality Measurements . 35 6.2.1 Functionality . 35 6.2.2 Reliability . 36 6.2.3 Usability . 36 6.2.4 Efficiency . 37 6.2.5 Maintainability . 38 6.2.6 Portability . 38 6.3 Conclusion . 39 References 41 List of Figures iii List of Figures 1 nu:view Scanner . .4 2 nu:view Workflow . .5 3 Pre-PACS Viewing . .8 4 Post-PACS Viewing . .9 5 Cloud-PACS Viewing . 10 6 Viewing Pipeline . 12 7 Multiplanar Reformation . 13 8 Basic Pipeline . 23 9 ImpactView Selection UI . 24 10 Basic VOI Reconstruction GUI . 28 11 RIA Orientation . 29 12 Network Layout . 33 13 Example of VOI Reconstructions in Different Resolutions. 36 14 Reconstruction times for different VOIs . 37 15 Reconstruction sizes for different VOIs . 38 List of Tables iv List of Tables 1 Requirements for Different Purposes . 19 2 Software Comparison . 20 3 AWS Hardware . 32 4 RWS Hardware . 32 List of Listings v List of Listings 1 Creation of FileSystemWatcher . 25 2 Example Realization of Monitoring . 25 3 Connecting an Action to an Event . 26 4 Reconstruction Example . 27 5 Shortcuts Example . 27 6 Batch Parsing Example . 27 7 Necessary Additions to LayerManager.h . 30 8 Creating and Connecting an Export Button . 30 9 Extraction of VOI Values . 30 10 Calculation of Voxelcounts for each Resolution . 31 11 Save VOI Values as Textfile . 31 12 Setting Up a scheduled Task . 34 List of Abbreviations vi List of Abbreviations AWS . Acquisition Workstation CLI . Command Line Interface DICOM . Digital Imaging and Communications in Medicine MTRA . Medical-Technical Readiology Assistant PACS . Picture Archiving and Communcations System ROI . Region of Interest RWS . Reconstruction Workstation VOI . Volume of Interest VWS . Viewing Workstation 1 Introduction 1 1 Introduction 1.1 Background In todays world digital imaging systems are a constantly developing standard in every modern hospital. More and more analog medical devices are replaced by their digital substitutes. Additionally, virtually all patient data is processed digitally nowadays. From billing processes to the scheduling of appointments, most analogue processses have been replaced by their digital counterparts. Similar to other business areas or companies one can hardly imagine a modern hospital without any digitalized workflows. While this brought a lot of.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    53 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us