Observation of the Airglow from the ISS by the IMAP Mission *Y

Observation of the Airglow from the ISS by the IMAP Mission *Y

<p><em>2013/3/13(ANGWIN workshop, T a chikawa) </em></p><p>Observation of the airglow from the ISS by the IMAP mission </p><p>*Y. Akiya [1], A. Saito [1], T. Sakanoi [2], <br>Y. Hozumi [1], A. Yamazaki [3], Y. Otsuka [4] </p><p>[1] Graduation School of Science, Kyoto University , [2] PPARC, Tohoku University, <br>[3] ISAS/JAXA, [4] STE Laboratory, Nagoya University </p><p>----- Outline ----- <br>Introduction of the IMAP mission Visible and near-infrared spectrographic imager Samples of airglow observation by VISI Summary </p><p>“ISS-IMAP” mission </p><p>Ionosphere, Mesosphere, Upper </p><p>Imagers of the </p><p>atmosphere and Plasmasphere mapping mission from the International Space Station (ISS) </p><p>ISS-IMAP mission </p><p>Observational imagers were installed on the Exposure Facility of Japanese Experimental Module: August 9th, 2012. </p><p>Initial checkout: August and September, 2012 </p><p>Nominal observations: October, 2012 - </p><p>[Pictures: Courtesy of JAXA/NASA] </p><p>“ISS-IMAP” mission </p><p>Two imagers are set in MCE and observe from the Exposure </p><p>EUVI </p><p>Facility of Japanese Experiment Module on the ISS. </p><p>VISI (Visible and near-infrared spectrographic imager) observes airglow emission with line </p><p>VISI </p><p>scanning in the nadir direction. EUVI (Extreme ultraviolet imager) observes resonance scattering light from plasma in the upper atmosphere in the limb direction. </p><p>[Sakanoi et al., 2011] </p><p>[http://eol.jsc.nasa.gov] </p><p>Aurora <br>Airglow </p><p>EUVI-FOV </p><p>VISI-FOV </p><p>Extreme Ultraviolet Imager (EUVI) </p><p>Resonant scattering: 83.4 nm (O<sup style="top: -0.84em;">+</sup>), 30.4 nm (He<sup style="top: -0.84em;">+</sup>) Observation in the day side and the night side Limb observation in backward FOV 15 deg. Weight: 19.3 kg, Size: 170 mm X 370 mm X 480 mm </p><p>Initial test of <br>EUVI: Lid close on August 11, 2012 </p><p>EUVI He<sup style="top: -0.6667em;">+ </sup><br>(September 26, 2012 07:26UT) </p><p>Visible and near-infrared spectrographic imager (VISI) </p><p>Airglow: O (630 nm), OH (8-3 band around 730 nm), O<sub style="top: 0.1838em;">2 </sub>(762 nm) Observation in the night side Nadir direction observation with FOVs pointing 45 degrees forward and 45 degrees backward </p><p>Weight: 14.5 kg, Size: 170 mm X 370 mm X 480 mm Several observational mode </p><p>ISS moving direction </p><p>Forward FOV <br>Backward FOV </p><p>Observational mode of VISI </p><p>Calibration mode </p><p>Calibration mode </p><p>Images are read out without binning. Full frame data are recorded. </p><p>Exposure time: 2 - 4 seconds </p><p>Spectral mode </p><p>Data at three ROIs (ROI = Region of interest) determined in the forward FOV and three ROIs in the backward FOV are recorded. </p><p>Exposure time: 1 - 6 seconds Binning: 8, 16, 32 pixels in spatial direction </p><p>Peak mode </p><p>The peak and background on each spectrum in the ROIs are determined and recorded. </p><p>Left: Spectral mode </p><p>Right: Peak mode </p><p>Exposure time and binning are same as spectral mode. </p><p>Averaged intensity of calibration data spectrum </p><p>Averaged for 56 </p><p>400 </p><p>calibration mode data </p><p>[6] </p><p>Forward FOV </p><p>Backward FOV </p><p>taken from August to December, 2012. </p><p>300 200 </p><p>[1] 557.7nm(O) [2] 589.6nm(Na) </p><p>[3] 630.0nm(O) </p><p>[4] 636.4nm(O) [5] 732.0nm(O<sup style="top: -0.735em;">+</sup>) </p><p>[6] 761.9nm(O<sub style="top: 0.1837em;">2</sub>) </p><p>[7] 777.4nm(O) [8] 844.6nm(O) [9] 864.5nm (O<sub style="top: 0.1838em;">2</sub>) </p><p>[9] <br>[1] <br>[2] </p><ul style="display: flex;"><li style="flex:1">[3] </li><li style="flex:1">[5] </li></ul><p>[7] <br>[8] </p><p>100 <br>0</p><p>[4] </p><p></p><ul style="display: flex;"><li style="flex:1">500 </li><li style="flex:1">700 800 900 </li></ul><p>600 </p><p>Wavelength [nm] </p><p>Averaged intensity of OH band emissions </p><p>Average of 56 calibration mode data taken from August to December, 2012. </p><p>70 60 </p><p>50 40 30 20 </p><p>Forward FOV </p><p>Backward FOV </p><p>[6] <br>[5] <br>[2][3] </p><p>[1] <br>[4] </p><p>[1] 7-1 (560-570nm) [2] 8-2 (590-600nm) </p><p>[7] <br>[8] </p><p>[3] 5-0, 9-3 (620-640nm) </p><p>[4] 6-1 (650-670nm) [5] 7-2 (690-705nm) </p><p>10 <br>0</p><p>[6] 8-3, 4-0, 9-4, 5-1 (720-810 nm) </p><p></p><ul style="display: flex;"><li style="flex:1">500 </li><li style="flex:1">700 800 900 </li></ul><p>600 </p><p>Wavelength [nm] </p><p>[7] 6-2 (840-860nm) [8] 7-3 (880-900nm) </p><p>762-nm Peak mode observation </p><p>Observation around 2012/9/25 02:15 UT </p><p>762-nm (95 km altitude) <br>Background </p><p>630-nm Peak mode observation </p><p>Observation around 2012/9/25 02:15 UT </p><p>630-nm (250 km altitude) <br>Background </p><p>Calibration and flattening of observational data </p><p>White pixels are already subtracted from the observational data. </p><p>1000 </p><p>Two strong lines are seen in the </p><p>800 </p><p>762-nm forward FOV peak image. These are also seen in background images. </p><p>600 </p><p>The strength of this effect is not uniform in the same observation. Strength is </p><p>affected by the intensity of the light passed the optical system. </p><p>Coordinate [pixel] <br>400 </p><p>0 10 20 30 40 50 60 </p><p>Summary </p><p>ISS-IMAP mission started the observation of the upper atmosphere in August. Nominal observations by VISI and EUVI has been carried out. </p><p>VISI observes the airglow in the nadir direction with two field of views. Target is the airglow originated from the atomic oxygen (630-nm wavelength), OH molecules (0-0 band) and oxygen molecules (762- nm wavelength). It is able to observe 557.7-nm emission from the atomic oxygen, Na emission and other OH band emissions in calibration mode observation. </p><p>It is needed to subtract noise caused by electric interference and nonuniformity of optical slit. Noise caused from electrical part has same phase and appearance. On the other hand, noise caused from optical part is different in every observation. Calibration of observational data is needed. </p><p>Sensitivity between two field-of-views of VISI are slightly different. This is also thought to be caused from the non-uniformity of the slit width. </p><p>Ground-based airglow observations </p><p>ALOHA-93 campaign FRONT campaign OMTI: Optical Mesosphere Thermosphere Imagers </p><p>Another ground-based airglow imager will be put at Hawaii as a part of </p><p>Observations of OH airglow by OMTI [Shiokawa et al., 1999] </p><p>ISS-IMAP project. </p><p>Airglow observation from space shuttle </p><p>Observed by GLO-1 during the STS 53 shuttle mission [Broadfoot et al., 1999] </p><p>Many observations of the airglow are made by the ground-based imager, rockets and satellites. </p><p>Airglow is observed with spectrographic image in the </p><p>nadir direction in the ISS-IMAP mission. </p><p>Airglow observations by rockets and satellites </p><p>Example of rocket observations (Photometer of TOMEX project) are shown in the right figures </p><p>TIMED satellite WINDII, HRDI on UARS satellite </p><p>ISUAL/FORMOSAT-2 Multi-spectral auroral camera on INDEX (Reimei) satellite </p><p>[Hecht et al., 2004] </p><p>Airglow observation from space shuttle </p><p>Observed by GLO-1 during the STS 53 shuttle mission [Broadfoot et al., 1999] </p><p>View of ISS-IMAP instruments in “MCE” </p><p>MCE = Multi-mission consolidated equipment </p><p>1.8 m x 1.0 m x 0.8 m, 450 kg weight </p><p>EUVI(IMAP) </p><p>SIMPLE </p><p>Five missions (IMAP, GLIMS, SIMPLE, REXJ and HDTV) uses a single port this time. </p><p>REXJ <br>GLIMS </p><p>VISI(IMAP) </p><p>HDTV </p><p>Specification of VISI </p><p>Size 450&nbsp;mm x 240 mm x 210 mm </p><ul style="display: flex;"><li style="flex:1">Weight </li><li style="flex:1">14.5 kg </li></ul><p>e2V 47-20 back-illuminated AIMO, 1024 x 1024 pixels <br>1 pixel size = 13.3μm x 13.3μm <br>CCD sensor </p><p>Rectangular shaped <br>(90 x 0.09 deg) <br>FOVs pointing 45 degrees forward and 45 degrees backward <br>Field-ofview <br>(FOV) </p><p>Objective lens <br>F/0.96, f = 5.5 mm </p><p>ISS moving direction </p><p>Forward FOV </p><p>Spectrosc Wavelength&nbsp;coverage: 600 - opic 800&nbsp;nm in the both FOVs properties Resolutions&nbsp;~ 1.0nm / pixel </p><p>Backward FOV </p><p>Specification data:[Sakanoi et al., 2011] </p><p>Observational target of VISI </p><p>Atomic oxygen (O) airglow <br>630-nm wavelength ~ 250 km altitude (F2 layer), ~ 100 kR <br>OH molecule airglow observes in 730-nm wavelength ~ 87 km altitude, ~ 1kR <br>Oxygen molecule (O<sub style="top: 0.2392em;">2</sub>) airglow <br>762-nm wavelength ~ 100 km altitude </p><p>630-nm emission from atomic oxygen </p><p>O(<sup style="top: -1.0383em;">1</sup>D) → O(<sup style="top: -1.0383em;">3</sup>P<sub style="top: 0.2596em;">2</sub>) + hν(630.0nm) O(<sup style="top: -1.0383em;">1</sup>D) → O(<sup style="top: -1.0383em;">3</sup>P<sub style="top: 0.2596em;">1</sub>) + hν(636.4nm) O(<sup style="top: -1.0383em;">1</sup>D) → O(<sup style="top: -1.0383em;">3</sup>P<sub style="top: 0.2596em;">0</sub>) + hν(639.2nm) Intensity of 630.0-nm wavelength emission at night is ~100 kR </p><p>The lifetime of the excited state (<sup style="top: -1.0383em;">1</sup>D) of the atomic oxygen is ~134 seconds. These atoms radiates at the altitude of ~250 km (~F2 layer). </p><p>762-nm emission from oxygen molecule </p><p>The emission from oxygen molecule O<sub style="top: 0.2654em;">2</sub>(b<sup style="top: -1.0617em;">1</sup>Σ<sup style="top: -1.0617em;">+ </sup>) </p><p>g</p><p>→ O<sub style="top: 0.2654em;">2</sub>(X<sup style="top: -1.0617em;">3</sup>Σ<sup style="top: -1.0617em;">-</sup><sub style="top: 0.2654em;">g</sub>) has two intense bands: <br>761.9-nm, (0-0) band 864.5-nm, (0-1) band <br>Radiative lifetime of metastable molecules is ~12 seconds. These molecules emit at the altitude in 90 - 100 km. These emissions are usually absorbed by the Earth atmosphere and difficult to observe from the ground. </p><p>Hydroxyl emissions </p><p>Hydroxyl emission arises in the upper atmosphere at ~87 km altitude. Average intensity of this emission is ~ 1 kR. </p><p>(8-3) band is around 730-nm wavelength OH molecules are thought to be produced by the reactions in below. (M = O<sub style="top: 0.2129em;">2 </sub>or N<sub style="top: 0.2129em;">2</sub>) </p><p>The ozone-hydrogen reaction: O + O<sub style="top: 0.2129em;">2 </sub>+ M → O<sub style="top: 0.2129em;">3 </sub>+ M H + O<sub style="top: 0.2129em;">3 </sub>→ OH + O<sub style="top: 0.2129em;">2 </sub></p><p>The reaction of perhydroxyl with atomic oxygen: H + O<sub style="top: 0.2129em;">2 </sub>+ M → HO<sub style="top: 0.2129em;">2 </sub>+ M O + HO<sub style="top: 0.2129em;">2 </sub>→ OH + O<sub style="top: 0.2129em;">2 </sub></p><p>Data processing </p><p>Camera format data </p><p>VISI raw data </p><p>Take out observational data </p><p>tfb data&nbsp;One file for one raw data file </p><p>Separate data into groups for each observations </p><p>decoded data&nbsp;One file for one snap shot </p><p>Refer the ROM table (Observational mode, Exposure time), sensitivity <br>Make continuous data file for one observation </p><p>Level-1 data </p><p>One file for one observation (one mode) </p><p>IDL routines q - parameters, transfer to absolute </p><p>intensity, FOV angle </p><p>plotted data </p><p>altitude, attitude </p><p>JPEG, FITS, IDL save </p><p>Level-2 data&nbsp;“Science” data </p><p>Example data of Calibration mode </p><p># Version: 1.0 # Program: visi_level1_make.pro (Ver. 1.0) # Creator: T. Sakanoi </p><p>←Version of data ←IDL procedure used ←Data creator </p><p># Create Date: Mon Oct&nbsp;1 14:43:55 2012 </p><p>←Created date </p><p># Data File Start: IMP_EXP_2012-09-05.log_tfb_VISI3706_12090509452305_TBL14_0543207_decode.dat # Data File End&nbsp;: </p><p>←First decoded data </p><p>IMP_EXP_2012-09-05.log_tfb_VISI3706_12090509452305_TBL14_0543207_decode.dat </p><p>←Last decoded data </p><p></p><ul style="display: flex;"><li style="flex:1"># Data File Number: </li><li style="flex:1">1</li></ul><p></p><p>←Number of shots in the observation </p><p># VISI Table Version: 2012-02-21 # Mode: </p><p>←Date of ROM table updated ←Observational mode (No description for CAL mode) ←Binning ←Exposure time ←Exposure time + read out </p><p># Binning Number (a) (pix): # Exposure Time (b) (sec)= # Exposure Cycle (sec)= <br>32 <br>6.00000 <br>6.58800 <br># X-pix, Y-Pix, ROI number=&nbsp;1028 1072 # Unit: Counts in a exposure time <br>1</p><p>←Number of pixels in Spatial, Wavelength and number of ROI ←Physical unit of the data in below <br>←Sensitivity </p><p>←Mode of gain </p><p># Sensitivity at 630,730,762nm (c) (el/R/pix/sec):&nbsp;0.0320000 0.0320000 0.0300000 # Gain : # Conversion Factor from Count to Electron (e) : <br>0</p><p>←Relation between counts and electrons </p><p>1.24000 <br># NOTICE: You get intensity in Rayleigh by Count*(e)/(a)/(b)/(c) # END OF HEADER </p><p>←Number of file is 1 if 0/0 ←Time of observational shot (←This description can be ignored in CAL mode) </p><p>File number= Date, UT(hhmmss)= 20120905 094523 O 630nm,&nbsp;Backward,ROI= 5/ </p><ul style="display: flex;"><li style="flex:1">0/ </li><li style="flex:1">0</li></ul><p>6<br>691 691 690 689 692 689 688 688 688 686 688 691 689 691 684 686 688 686 690 693 </p><p>←Data are written in below </p><p>Example data of Spectral mode </p><p># Version: 1.0 # Program: visi_level1_make.pro (Ver. 1.0) # Creator: T. Sakanoi # Create Date: Mon Oct&nbsp;1 14:43:44 2012 # Data File Start: IMP_EXP_2012-09-05.log_tfb_VISI0001_12090500212205_TBL01_0003986_decode.dat # Data File End&nbsp;: IMP_EXP_2012-09-05.log_tfb_VISI0001_12090500212205_TBL01_0003986_decode.dat </p><ul style="display: flex;"><li style="flex:1"># Data File Number: </li><li style="flex:1">1</li></ul><p># VISI Table Version: 2012-02-21 # Mode: Spectral mode # Binning Number (a) (pix): # Exposure Time (b) (sec)= # Exposure Cycle (sec)= # X-pix, Y-Pix, ROI number= <br>16 <br>1.00000 <br>1.86200 </p><ul style="display: flex;"><li style="flex:1">64 </li><li style="flex:1">12 </li><li style="flex:1">6</li></ul><p># Unit: Counts in a exposure time # Sensitivity at 630,730,762nm (c) (el/R/pix/sec):&nbsp;0.0320000 0.0320000 0.0300000 # Gain : # Conversion Factor from Count to Electron (e) : <br>0<br>1.24000 <br># NOTICE: You get intensity in Rayleigh by Count*(e)/(a)/(b)/(c) # END OF HEADER </p><p>←Number of file is 1 if 0/0 ←Time of observational shot ←Source of emission, wavelength, observed FOV, ROI number </p><p>File number= Date, UT(hhmmss)= 20120905 002122 O2 762nm, Forward, ROI=&nbsp;0/ </p><ul style="display: flex;"><li style="flex:1">0/ </li><li style="flex:1">0</li></ul><p>6<br>521 521 522 530 585 536&nbsp;3488 556 551 543 539 564 613 532 539 535 544 531 533 535 536 538 699 548 542 550 557 567 567 571 561 561 551 561 561 551 558 558 575 579 583 575 564 558 544 554 539 583 542 540 535 533 535 527 525 533 531 528 525 519 517 521 519 491 </p><p>←Data are written in below </p><p>Example data of Peak mode </p><p># Version: 1.0 # Program: visi_level1_make.pro (Ver. 1.0) # Creator: T. Sakanoi # Create Date: Mon Oct&nbsp;1 14:43:45 2012 # Data File Start: IMP_EXP_2012-09-05.log_tfb_VISI0002_12090500212505_TBL07_0000981_decode.dat # Data File End&nbsp;: IMP_EXP_2012-09-05.log_tfb_VISI0662_12090500422405_TBL07_0000912_decode.dat </p><ul style="display: flex;"><li style="flex:1"># Data File Number: </li><li style="flex:1">661 </li></ul><p># VISI Table Version: 2012-02-21 # Mode: Peak mode # Binning Number (a) (pix): # Exposure Time (b) (sec)= # Exposure Cycle (sec)= # X-pix, Y-Pix, ROI number= <br>16 <br>1.00000 <br>1.86200 </p><ul style="display: flex;"><li style="flex:1">64 </li><li style="flex:1">2</li><li style="flex:1">6</li></ul><p># Unit: Counts in a exposure time # Sensitivity at 630,730,762nm (c) (el/R/pix/sec):&nbsp;0.0320000 0.0320000 0.0300000 # Gain : # Conversion Factor from Count to Electron (e) : <br>0<br>1.24000 <br># NOTICE: You get intensity in Rayleigh by Count*(e)/(a)/(b)/(c) # END OF HEADER </p><p>←1st data of 660 data in this observation ←Time of observational shot ←Source of emission, wavelength, observed FOV, ROI number </p><p>File number= Date, UT(hhmmss)= 20120905 002125 O2 762nm, Forward, ROI=&nbsp;0/ </p><ul style="display: flex;"><li style="flex:1">0/ </li><li style="flex:1">660 </li></ul><p>6<br>548 870 861 848 902 959 546 519 537 537 531 532 533 523 <br>551 924 875 872 907 976 548 524 539 540 527 536 539 520 <br>550 910 843 876 935 953 540 523 538 540 533 537 528 515 <br>557 922 843 893 964 928 2489 532 520 535 530 531 539 533 499 <br>628 919 844 891 980 <br>613 871 866 1191 850 979 <br>890 <br>858 861 <br>840 850 <br>860 <br>871 925 <br>791 <br>820 881 <br>850 <br>926 908 <br>554 <br>826 881 <br>846 <br>936 935 <br>548 <br>841 955 <br>892 </p><p>←Peak data </p><p>565 528 527 535 534 528 <br>545 534 535 529 537 526 <br>666 531 529 530 538 537 <br>578 530 537 531 534 528 <br>549 535 531 537 543 520 <br>545 532 534 532 542 520 </p><p>←Background data </p><p>Calibration mode image </p><p>2012/8/13 03:25:08 UT Exposure time: 6 seconds Line dispersion: 0.90 nm/pixel in forward FOV, 1.02 nm/pixel in backward FOV </p><p>Region for ~600 km is taken in spatial direction </p><p>Forward FOV </p><p>Wavelength </p><p>Backward FOV </p><p>Wavelength </p><p>Count values on CCD </p><p>570 560 550 540 </p><p>Backward <br>FOV </p><p>Counts shown in the right figure are averaged for 60 pixels in each regions. </p><p>Forward <br>FOV </p><p>530 </p><p>650 850 <br>750 </p><p>550 650 750 </p><p>Wavelength [nm] </p><p>Wavy structure caused from mechanical part of imager is seen in the backward FOV. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    37 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us