
<p><strong>International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Then </li><li style="flex:1">A.B </li><li style="flex:1">=</li></ul><p></p><p>Discussion on Some <br>Properties of an <br>Infinite Non-abelian </p><p>=</p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">Where </li></ul><p></p><p>Group </p><p>Ankur Bala<sup style="top: -0.42em;">#1</sup>, Madhuri Kohli<sup style="top: -0.42em;">#2 </sup></p><p><sup style="top: -0.38em;"><em>#1 </em></sup><em>M.Sc. , Department of Mathematics, University of </em><br><em>Delhi, Delhi </em><br><sup style="top: -0.38em;"><em>#2 </em></sup><em>M.Sc., Department of Mathematics, University of </em><br><em>Delhi, Delhi </em></p><p>( 1 ) </p><p><em>India </em></p><p><strong>Abstract</strong>: In this Article, we have discussed some of the properties of the infinite non-abelian group of matrices whose entries from integers with non-zero determinant. Such as the number of elements of order 2, number of subgroups of order 2 in this group. Moreover for every finite group , there exists isomorphic to the group . <strong>Keywords: </strong>Infinite non-abelian group, </p><ul style="display: flex;"><li style="flex:1">such that </li><li style="flex:1">has a subgroup </li></ul><p>( 2 ) <br>Now from (1) and (2) one can easily say that is homomorphism. </p><p><strong>Notations: </strong><em>GL</em>(<em>n</em>,<strong>Z</strong>) </p><p><sub style="top: 0.266em;"><em>n</em><em>n </em></sub>) = 1 </p><p></p><p></p><ul style="display: flex;"><li style="flex:1">:</li><li style="flex:1">&</li></ul><p></p><p>[<em>a</em><sub style="top: 0.2519em;"><em>ij </em></sub>]<sub style="top: 0.2519em;"><em>n</em><em>n </em></sub><em>a</em><sub style="top: 0.2519em;"><em>ij </em></sub><strong>Z. </strong></p><p></p><p></p><ul style="display: flex;"><li style="flex:1">Now consider </li><li style="flex:1">,</li></ul><p>det( </p><p>[<em>a</em><sub style="top: 0.2519em;"><em>ij </em></sub>] </p><p></p><p><strong>Theorem 1: </strong></p><p>can be embedded in <br>Clearly </p><p>Hence is injective homomorphism. So, by fundamental theorem of isomorphism one can <br><strong>Proof: </strong>If we prove this theorem for then we are done. <br>,easily conclude that for all m can be embedded in </p><ul style="display: flex;"><li style="flex:1">Let </li><li style="flex:1">us </li><li style="flex:1">define </li><li style="flex:1">a</li><li style="flex:1">mapping </li></ul><p>.</p><ul style="display: flex;"><li style="flex:1">Such </li><li style="flex:1">that </li></ul><p></p><p><strong>Theorem 2: </strong></p><p>is non-abelian infinite group </p><p><strong>Proof: </strong></p><p>Consider <br>Consider And let H= <br>Let </p><p>B= </p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">=</li><li style="flex:1">and </li></ul><p>Clearly H is subset of And H has infinite elements. Hence Now <br>.is infinite group. </p><ul style="display: flex;"><li style="flex:1">consider two </li><li style="flex:1">matrices </li></ul><p>Such that determinant of A and B is <br>.<br>, where <br>And </p><p>ISSN: 2231-5373 </p><p><a href="/goto?url=http://www.ijmttjournal.org" target="_blank">http://www.ijmttjournal.org </a></p><p>Page 108 </p><p><strong>International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 </strong></p><p><strong>Proof</strong>: Let G be any group and A(G) be the group of all permutations of set G. For any </p><p>Then as Hence, </p><ul style="display: flex;"><li style="flex:1">, define a map </li><li style="flex:1">:</li><li style="flex:1">such that </li></ul><p>Hence, </p><p>And by a direct application theorem 1, one can conclude that is infinite and non-abelian is non-abelian. <br><strong>Theorem 3: </strong>Number of elements of order 2 in is infinite and hence number of subgroups of order 2 is infinite. is well defined <br>Clearly is one-one. Also for any Since is onto. <br>And hence is permutation. </p><p><strong>Proof: </strong></p><p>Consider <br>Let K be set of all such permutations Clearly K is subgroup of A(G). </p><ul style="display: flex;"><li style="flex:1">Now define a mapping </li><li style="flex:1">such that </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Let </li><li style="flex:1">, and order of A is 2. </li></ul><p>Then <br>Clearly is well-defined and one-one map. </p><p>And consider the following equation </p><p>Which shows that is homomorphism Obviously, is onto homomorphism is isomorphism. <br>And hence the theorem. </p><p><strong>Theorem 5</strong>: </p><p>is isomorphic to some subgroup of </p><p><em>GL</em>(<em>n</em>,<strong>Z</strong>) for all </p><p>.</p><ul style="display: flex;"><li style="flex:1">Since </li><li style="flex:1">then: </li></ul><p></p><p><strong>Proof</strong>: Let </p><p>be the permutation group on n </p><ul style="display: flex;"><li style="flex:1">Case (i): </li><li style="flex:1">,</li></ul><p>symbols. </p><p>Define : <em>S </em><em>GL n</em>,<strong>Z </strong></p><p>such that: </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p><em>n</em></p><p>Subcase (i): If we take Then </p><p>() <sub style="top: 0.394em;"><em>n</em><em>n </em></sub> <em>S</em><sub style="top: 0.2613em;"><em>n </em></sub></p><p> </p><p>Where </p><p></p><p>is permutation matrix obtained by </p><p></p><p> </p><p><em>n</em><em>n </em></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p></p><p><em>n</em></p><p><br></p><p><sup style="top: 0.0081em;">i.e. if </sup> </p><p>then </p><p><sub style="top: 0.2622em;">1 </sub><sub style="top: 0.2622em;">2 </sub> <sub style="top: 0.2622em;"><em>n </em></sub></p><p><em>R</em></p><p><br></p><p><sup style="top: -0.7419em;">1 </sup> </p><p>Let </p><p><em>R</em><sub style="top: 0.2581em;">2 </sub></p><p>Then our case is </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p> </p><p><em>n</em><em>n </em></p><p></p><p><em>R</em><sub style="top: 0.2601em;"><em>n </em></sub></p><p><em>R</em><sub style="top: 0.2613em;"></sub><sup style="top: -0.4505em;"><em>th </em></sup></p><p></p><ul style="display: flex;"><li style="flex:1">has </li><li style="flex:1">order </li><li style="flex:1">2</li><li style="flex:1">if </li></ul><p>is </p><p><em>R</em></p><p></p><p></p><ul style="display: flex;"><li style="flex:1">Where </li><li style="flex:1">is </li><li style="flex:1">row of identity matrix. </li></ul><p></p><p><em>i</em></p><p><em>i</em></p><p>Clearly c has infinite choices. </p><ul style="display: flex;"><li style="flex:1">Clearly </li><li style="flex:1">is a homomorphism. </li></ul><p>Number of elements of order 2 in </p><p>infinite. And since number of elements of order 2 = Number of subgroups of order 2 in any group. <br>Number of subgroups of order 2 in infinite. Also by a direct application of theorem 1, one can easily conclude that this theorem is valid for every <br>Now consider the kernel of this homomorphism. </p><p>ker :() <em>I </em></p><p> <em>i </em> <sub style="top: 0.2652em;"><em>i </em></sub></p><p><em>i </em></p><p></p><p><sub style="top: 0.1872em;"><em>n</em><em>n</em></sub> </p><p> ker is trivial. Hence the homomorphism is injective. is </p><p><em>S</em><sub style="top: 0.2652em;"><em>n </em></sub></p><p></p><p>is isomorphic to some subgroup of </p><p><em>GL</em>(<em>n</em>,<strong>Z</strong>) for all <em>n</em> </p><p><strong>Theorem 6: </strong>For every finite group , there exists </p><p>.value of <strong>Theorem 4</strong>: Every finite group can be embedded in </p><ul style="display: flex;"><li style="flex:1">such that </li><li style="flex:1">has a subgroup </li></ul><p>for some </p><ul style="display: flex;"><li style="flex:1">isomorphic to the group </li><li style="flex:1">.</li></ul><p></p><p>ISSN: 2231-5373 </p><p><a href="/goto?url=http://www.ijmttjournal.org" target="_blank">http://www.ijmttjournal.org </a></p><p>Page 109 </p><p><strong>International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 </strong></p><p><strong>Proof: </strong>It is an obvious observation of theorem 4 and theorem 5. </p><p><strong>CONCLUSION </strong></p><p>is non-abelian infinite group having infinite number of elements of order 2 as well as subgroups of order 2. Also embedded in can be <br>, Moreover </p><ul style="display: flex;"><li style="flex:1">such </li><li style="flex:1">for every finite group , there exists </li></ul><p></p><ul style="display: flex;"><li style="flex:1">that </li><li style="flex:1">has a subgroup isomorphic to the </li></ul><p></p><ul style="display: flex;"><li style="flex:1">group </li><li style="flex:1">.</li></ul><p></p><p><strong>REFERENCES </strong></p><p>[1] Contemporary Abstract Algebra, J.A. Gallian, Cengage <br>Learning, 2016 .ISBN: 1305887859, 9781305887855 <br>[2] Abstract Algebra (3rd Edition), David S. Dummit , Richard <br>M. Foote, ISBN: 978-0-471-43334-7 <br>[3] On Embedding of Every Finite Group into a Group of <br>Automorphism IJMTT, Vol.37, Number 2, ISSN: 2231- 5373 <br>[4] A Course in Abstract Algebra, Vijay K. Khanna, S.K. <br>Bhambri, Second Edition, Vikas Publishing House Pvt Limited, 1999, 070698675X, 9780706986754 </p><p>ISSN: 2231-5373 </p><p><a href="/goto?url=http://www.ijmttjournal.org" target="_blank">http://www.ijmttjournal.org </a></p><p>Page 110 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages3 Page
-
File Size-