Discussion on Some Properties of an Infinite Non-Abelian Group

Discussion on Some Properties of an Infinite Non-Abelian Group

<p><strong>International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 </strong></p><p></p><ul style="display: flex;"><li style="flex:1">Then </li><li style="flex:1">A.B </li><li style="flex:1">=</li></ul><p></p><p>Discussion on Some <br>Properties of an <br>Infinite Non-abelian </p><p>=</p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">Where </li></ul><p></p><p>Group </p><p>Ankur Bala<sup style="top: -0.42em;">#1</sup>, Madhuri Kohli<sup style="top: -0.42em;">#2 </sup></p><p><sup style="top: -0.38em;"><em>#1 </em></sup><em>M.Sc. , Department of Mathematics, University of </em><br><em>Delhi, Delhi </em><br><sup style="top: -0.38em;"><em>#2 </em></sup><em>M.Sc., Department of Mathematics, University of </em><br><em>Delhi, Delhi </em></p><p>( 1 ) </p><p><em>India </em></p><p><strong>Abstract</strong>: In this Article, we have discussed some of the properties of the infinite non-abelian group of matrices whose entries from integers with non-zero determinant. Such as the number of elements of order 2, number of subgroups of order 2 in this group. Moreover for every finite group&nbsp;, there exists isomorphic to the group&nbsp;. <strong>Keywords: </strong>Infinite non-abelian group, </p><ul style="display: flex;"><li style="flex:1">such that </li><li style="flex:1">has a subgroup </li></ul><p>( 2 ) <br>Now from (1) and (2) one can easily say that&nbsp;is homomorphism. </p><p><strong>Notations: </strong><em>GL</em>(<em>n</em>,<strong>Z</strong>) </p><p><sub style="top: 0.266em;"><em>n</em><em>n </em></sub>) = 1 </p><p></p><p></p><ul style="display: flex;"><li style="flex:1">:</li><li style="flex:1">&amp;</li></ul><p></p><p>[<em>a</em><sub style="top: 0.2519em;"><em>ij </em></sub>]<sub style="top: 0.2519em;"><em>n</em><em>n </em></sub><em>a</em><sub style="top: 0.2519em;"><em>ij </em></sub><strong>Z. </strong></p><p></p><p></p><ul style="display: flex;"><li style="flex:1">Now consider </li><li style="flex:1">,</li></ul><p>det( </p><p>[<em>a</em><sub style="top: 0.2519em;"><em>ij </em></sub>] </p><p></p><p><strong>Theorem 1: </strong></p><p>can be embedded in <br>Clearly </p><p>Hence is&nbsp;injective homomorphism. So, by fundamental theorem of isomorphism one can <br><strong>Proof: </strong>If we prove this theorem for then we are done. <br>,easily conclude that for all m can be embedded in </p><ul style="display: flex;"><li style="flex:1">Let </li><li style="flex:1">us </li><li style="flex:1">define </li><li style="flex:1">a</li><li style="flex:1">mapping </li></ul><p>.</p><ul style="display: flex;"><li style="flex:1">Such </li><li style="flex:1">that </li></ul><p></p><p><strong>Theorem 2: </strong></p><p>is non-abelian infinite group </p><p><strong>Proof: </strong></p><p>Consider <br>Consider And let H= <br>Let </p><p>B= </p><ul style="display: flex;"><li style="flex:1">A</li><li style="flex:1">=</li><li style="flex:1">and </li></ul><p>Clearly H is subset of And H has infinite elements. Hence Now <br>.is infinite group. </p><ul style="display: flex;"><li style="flex:1">consider two </li><li style="flex:1">matrices </li></ul><p>Such that determinant of A and B is <br>.<br>, where <br>And </p><p>ISSN: 2231-5373 </p><p><a href="/goto?url=http://www.ijmttjournal.org" target="_blank">http://www.ijmttjournal.org </a></p><p>Page 108 </p><p><strong>International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 </strong></p><p><strong>Proof</strong>: Let G be any group and A(G) be the group of all permutations of set G. For any </p><p>Then as Hence, </p><ul style="display: flex;"><li style="flex:1">, define a map </li><li style="flex:1">:</li><li style="flex:1">such that </li></ul><p>Hence, </p><p>And by a direct application theorem 1, one can conclude that&nbsp;is infinite and non-abelian is non-abelian. <br><strong>Theorem 3: </strong>Number of elements of order 2 in is infinite and hence number of subgroups of order 2 is infinite. is well defined <br>Clearly is&nbsp;one-one. Also for any&nbsp;Since is onto. <br>And hence&nbsp;is permutation. </p><p><strong>Proof: </strong></p><p>Consider <br>Let K be set of all such permutations Clearly K is subgroup of&nbsp;A(G). </p><ul style="display: flex;"><li style="flex:1">Now define a mapping </li><li style="flex:1">such that </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Let </li><li style="flex:1">, and order of A is 2. </li></ul><p>Then <br>Clearly is&nbsp;well-defined and one-one map. </p><p>And consider&nbsp;the following equation </p><p>Which shows that&nbsp;is homomorphism Obviously, is&nbsp;onto homomorphism is isomorphism. <br>And hence the theorem. </p><p><strong>Theorem 5</strong>: </p><p>is isomorphic to some subgroup of </p><p><em>GL</em>(<em>n</em>,<strong>Z</strong>) for all </p><p>.</p><ul style="display: flex;"><li style="flex:1">Since </li><li style="flex:1">then: </li></ul><p></p><p><strong>Proof</strong>: Let </p><p>be the permutation group on n </p><ul style="display: flex;"><li style="flex:1">Case (i): </li><li style="flex:1">,</li></ul><p>symbols. </p><p>Define  : <em>S </em><em>GL n</em>,<strong>Z </strong></p><p>such that: </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p><em>n</em></p><p>Subcase (i): If we take Then </p><p>()   <sub style="top: 0.394em;"><em>n</em><em>n </em></sub> <em>S</em><sub style="top: 0.2613em;"><em>n </em></sub></p><p>  </p><p>Where </p><p></p><p>is permutation matrix obtained by </p><p></p><p>  </p><p><em>n</em><em>n </em></p><p></p><ul style="display: flex;"><li style="flex:1">1</li><li style="flex:1">2</li></ul><p></p><p></p><p><em>n</em></p><p><br></p><p><sup style="top: 0.0081em;">i.e. if </sup>  </p><p>then </p><p><sub style="top: 0.2622em;">1 </sub><sub style="top: 0.2622em;">2 </sub> <sub style="top: 0.2622em;"><em>n </em></sub></p><p><em>R</em></p><p><br></p><p><sup style="top: -0.7419em;">1 </sup> </p><p>Let </p><p><em>R</em><sub style="top: 0.2581em;">2 </sub></p><p>Then our case is </p><p></p><ul style="display: flex;"><li style="flex:1"></li><li style="flex:1"></li></ul><p></p><p>  </p><p><em>n</em><em>n </em></p><p></p><p><em>R</em><sub style="top: 0.2601em;"><em>n </em></sub></p><p><em>R</em><sub style="top: 0.2613em;"></sub><sup style="top: -0.4505em;"><em>th </em></sup></p><p></p><ul style="display: flex;"><li style="flex:1">has </li><li style="flex:1">order </li><li style="flex:1">2</li><li style="flex:1">if </li></ul><p>is </p><p><em>R</em></p><p></p><p></p><ul style="display: flex;"><li style="flex:1">Where </li><li style="flex:1">is </li><li style="flex:1">row of identity matrix. </li></ul><p></p><p><em>i</em></p><p><em>i</em></p><p>Clearly c has infinite choices. </p><ul style="display: flex;"><li style="flex:1">Clearly </li><li style="flex:1">is a homomorphism. </li></ul><p>Number of elements of order 2 in </p><p>infinite. And since number of elements of order 2 = Number of subgroups of order 2 in any group. <br>Number of subgroups of order 2 in infinite. Also by a direct application of theorem 1, one can easily conclude that this theorem is valid for every <br>Now consider the kernel of this homomorphism. </p><p>ker   :()  <em>I </em></p><p> <em>i </em> <sub style="top: 0.2652em;"><em>i </em></sub></p><p><em>i </em></p><p></p><p><sub style="top: 0.1872em;"><em>n</em><em>n</em></sub> </p><p> ker is trivial. Hence the homomorphism is injective. is </p><p><em>S</em><sub style="top: 0.2652em;"><em>n </em></sub></p><p></p><p>is isomorphic to some subgroup of </p><p><em>GL</em>(<em>n</em>,<strong>Z</strong>) for all <em>n</em> </p><p><strong>Theorem 6:&nbsp;</strong>For every finite group&nbsp;, there exists </p><p>.value of <strong>Theorem 4</strong>: Every finite group can be embedded in </p><ul style="display: flex;"><li style="flex:1">such that </li><li style="flex:1">has a subgroup </li></ul><p>for some </p><ul style="display: flex;"><li style="flex:1">isomorphic to the group </li><li style="flex:1">.</li></ul><p></p><p>ISSN: 2231-5373 </p><p><a href="/goto?url=http://www.ijmttjournal.org" target="_blank">http://www.ijmttjournal.org </a></p><p>Page 109 </p><p><strong>International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 </strong></p><p><strong>Proof: </strong>It is an obvious observation of theorem 4 and theorem 5. </p><p><strong>CONCLUSION </strong></p><p>is non-abelian infinite group having infinite number of elements of order 2 as well as subgroups of order 2. Also embedded in can be <br>, Moreover </p><ul style="display: flex;"><li style="flex:1">such </li><li style="flex:1">for every finite group&nbsp;, there exists </li></ul><p></p><ul style="display: flex;"><li style="flex:1">that </li><li style="flex:1">has a subgroup isomorphic to the </li></ul><p></p><ul style="display: flex;"><li style="flex:1">group </li><li style="flex:1">.</li></ul><p></p><p><strong>REFERENCES </strong></p><p>[1] Contemporary&nbsp;Abstract Algebra, J.A. Gallian, Cengage <br>Learning, 2016 .ISBN: 1305887859, 9781305887855 <br>[2] Abstract&nbsp;Algebra (3rd Edition), David S. Dummit , Richard <br>M. Foote, ISBN: 978-0-471-43334-7 <br>[3] On&nbsp;Embedding of Every Finite Group into a Group of <br>Automorphism IJMTT, Vol.37, Number 2, ISSN: 2231- 5373 <br>[4] A&nbsp;Course in Abstract Algebra, Vijay K. Khanna, S.K. <br>Bhambri, Second Edition, Vikas Publishing House Pvt Limited, 1999,&nbsp;070698675X, 9780706986754 </p><p>ISSN: 2231-5373 </p><p><a href="/goto?url=http://www.ijmttjournal.org" target="_blank">http://www.ijmttjournal.org </a></p><p>Page 110 </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us